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Abstract

This tutorial covers the canonical genetic algorithm as well as more experimental
forms of genetic algorithms� including parallel island models and parallel cellular genetic
algorithms� The tutorial also illustrates genetic search by hyperplane sampling� The
theoretical foundations of genetic algorithms are reviewed� include the schema theorem
as well as recently developed exact models of the canonical genetic algorithm�
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� Introduction

Genetic Algorithms are a family of computational models inspired by evolution� These
algorithms encode a potential solution to a speci�c problem on a simple chromosome�like
data structure and apply recombination operators to these structures so as to preserve critical
information� Genetic algorithms are often viewed as function optimizers� although the range
of problems to which genetic algorithms have been applied is quite broad�

An implementation of a genetic algorithm begins with a population of �typically random�
chromosomes� One then evaluates these structures and allocates reproductive opportunities
in such a way that those chromosomes which represent a better solution to the target problem
are given more chances to �reproduce	 than those chromosomes which are poorer solutions�
The �goodness	 of a solution is typically de�ned with respect to the current population�

This particular description of a genetic algorithm is intentionally abstract because in
some sense� the term genetic algorithm has two meanings� In a strict interpretation� the
genetic algorithm refers to a model introduced and investigated by John Holland �
��
� and
by students of Holland �e�g�� DeJong� 
��
�� It is still the case that most of the existing
theory for genetic algorithms applies either solely or primarily to the model introduced by
Holland� as well as variations on what will be referred to in this paper as the canonical
genetic algorithm� Recent theoretical advances in modeling genetic algorithms also apply
primarily to the canonical genetic algorithm �Vose� 
�����

In a broader usage of the term� a genetic algorithm is any population�based model that
uses selection and recombination operators to generate new sample points in a search space�
Many genetic algorithm models have been introduced by researchers largely working from






an experimental perspective� Many of these researchers are application oriented and are
typically interested in genetic algorithms as optimization tools�

The goal of this tutorial is to present genetic algorithms in such a way that students new
to this �eld can grasp the basic concepts behind genetic algorithms as they work through
the tutorial� It should allow the more sophisticated reader to absorb this material with
relative ease� The tutorial also covers topics� such as inversion� which have sometimes been
misunderstood and misused by researchers new to the �eld�

The tutorial begins with a very low level discussion of optimization to both introduce basic
ideas in optimization as well as basic concepts that relate to genetic algorithms� In section �
a canonical genetic algorithm is reviewed� In section � the principle of hyperplane sampling
is explored and some basic crossover operators are introduced� In section � various versions
of the schema theorem are developed in a step by step fashion and other crossover operators
are discussed� In section 
 binary alphabets and their e�ects on hyperplane sampling are
considered� In section � a brief criticism of the schema theorem is considered and in section
� an exact model of the genetic algorithm is developed� The last three sections of the
tutorial cover alternative forms of genetic algorithms and evolutionary computational models�
including specialized parallel implementations�

��� Encodings and Optimization Problems

Usually there are only two main components of most genetic algorithms that are problem
dependent� the problem encoding and the evaluation function�

Consider a parameter optimization problem where we must optimize a set of variables ei�
ther to maximize some target such as pro�t� or to minimize cost or somemeasure of error� We
might view such a problem as a black box with a series of control dials representing di�erent
parameters� the only output of the black box is a value returned by an evaluation function
indicating how well a particular combination of parameter settings solves the optimization
problem� The goal is to set the various parameters so as to optimize some output� In more
traditional terms� we wish to minimize �or maximize� some function F �X��X�� ����XM��

Most users of genetic algorithms typically are concerned with problems that are nonlinear�
This also often implies that it is not possible to treat each parameter as an independent
variable which can be solved in isolation from the other variables� There are interactions
such that the combined e�ects of the parameters must be considered in order to maximize or
minimize the output of the black box� In the genetic algorithm community� the interaction
between variables is sometimes referred to as epistasis�

The �rst assumption that is typically made is that the variables representing parameters
can be represented by bit strings� This means that the variables are discretized in an a
priori fashion� and that the range of the discretization corresponds to some power of �� For
example� with 
� bits per parameter� we obtain a range with 
��� discrete values� If the
parameters are actually continuous then this discretization is not a particular problem� This
assumes� of course� that the discretization provides enough resolution to make it possible to
adjust the output with the desired level of precision� It also assumes that the discretization
is in some sense representative of the underlying function�
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If some parameter can only take on an exact �nite set of values then the coding issue
becomes more di�cult� For example� what if there are exactly 
��� discrete values which
can be assigned to some variable Xi� We need at least 

 bits to cover this range� but
this codes for a total of ���� discrete values� The ��� unnecessary bit patterns may result
in no evaluation� a default worst possible evaluation� or some parameter settings may be
represented twice so that all binary strings result in a legal set of parameter values� Solving
such coding problems is usually considered to be part of the design of the evaluation function�

Aside from the coding issue� the evaluation function is usually given as part of the problem
description� On the other hand� developing an evaluation function can sometimes involve
developing a simulation� In other cases� the evaluation may be performance based and
may represent only an approximate or partial evaluation� For example� consider a control
application where the system can be in any one of an exponentially large number of possible
states� Assume a genetic algorithm is used to optimize some form of control strategy� In
such cases� the state space must be sampled in a limited fashion and the resulting evaluation
of control strategies is approximate and noisy �c�f�� Fitzpatrick and Grefenstette� 
�����

The evaluation function must also be relatively fast� This is typically true for any opti�
mization method� but it may particularly pose an issue for genetic algorithms� Since a genetic
algorithm works with a population of potential solutions� it incurs the cost of evaluating this
population� Furthermore� the population is replaced �all or in part� on a generational basis�
The members of the population reproduce� and their o�spring must then be evaluated� If it
takes 
 hour to do an evaluation� then it takes over 
 year to do 
����� evaluations� This
would be approximately 
� generations for a population of only ��� strings�

��� How Hard is Hard�

Assuming the interaction between parameters is nonlinear� the size of the search space is
related to the number of bits used in the problem encoding� For a bit string encoding of
length L� the size of the search space is �L and forms a hypercube� The genetic algorithm
samples the corners of this L�dimensional hypercube�

Generally� most test functions are at least �� bits in length and most researchers would
probably agree that larger test functions are needed� Anything much smaller represents a
space which can be enumerated� �Considering for a moment that the national debt of the
United States in 
��� is approximately ��� dollars� ��� does not sound quite so large�� Of
course� the expression �L grows exponentially with respect to L� Consider a problem with
an encoding of ��� bits� How big is the associated search space� A classic introductory
textbook on Arti�cial Intelligence gives one characterization of a space of this size� Winston
�
����
��� points out that ���� is a good approximation of the e�ective size of the search space
of possible board con�gurations in chess� �This assumes the e�ective branching factor at each
possible move to be 
� and that a game is made up of 
�� moves� 
���� � ������� � ������
Winston states that this is �a ridiculously large number� In fact� if all the atoms in the
universe had been computing chess moves at picosecond rates since the big bang �if any��
the analysis would be just getting started�	

The point is that as long as the number of �good solutions	 to a problem are sparse with
respect to the size of the search space� then random search or search by enumeration of a large

�



search space is not a practical form of problem solving� On the other hand� any search other
than random search imposes some bias in terms of how it looks for better solutions and where
it looks in the search space� Genetic algorithms indeed introduce a particular bias in terms
of what new points in the space will be sampled� Nevertheless� a genetic algorithm belongs
to the class of methods known as �weak methods	 in the Arti�cial Intelligence community
because it makes relatively few assumptions about the problem that is being solved�

Of course� there are many optimization methods that have been developed in mathe�
matics and operations research� What role do genetic algorithms play as an optimization
tool� Genetic algorithms are often described as a global search method that does not use
gradient information� Thus� nondi�erentiable functions as well as functions with multiple
local optima represent classes of problems to which genetic algorithms might be applied�
Genetic algorithms� as a weak method� are robust but very general� If there exists a good
specialized optimization method for a speci�c problem� then genetic algorithm may not be
the best optimization tool for that application� On the other hand� some researchers work
with hybrid algorithms that combine existing methods with genetic algorithms�

� The Canonical Genetic Algorithm

The �rst step in the implementation of any genetic algorithm is to generate an initial pop�
ulation� In the canonical genetic algorithm each member of this population will be a binary
string of length L which corresponds to the problem encoding� Each string is sometimes
referred to as a �genotype	 �Holland� 
��
� or� alternatively� a �chromosome	 �Scha�er�

����� In most cases the initial population is generated randomly� After creating an initial
population� each string is then evaluated and assigned a �tness value�

The notion of evaluation and �tness are sometimes used interchangeably� However� it
is useful to distinguish between the evaluation function and the �tness function used by a
genetic algorithm� In this tutorial� the evaluation function� or objective function� provides a
measure of performance with respect to a particular set of parameters� The �tness function
transforms that measure of performance into an allocation of reproductive opportunities�
The evaluation of a string representing a set of parameters is independent of the evaluation
of any other string� The �tness of that string� however� is always de�ned with respect to
other members of the current population�

In the canonical genetic algorithm� �tness is de�ned by� fi� �f where fi is the evaluation
associated with string i and �f is the average evaluation of all the strings in the population�
Fitness can also be assigned based on a string�s rank in the population �Baker� 
��
� Whitley�

���� or by sampling methods� such as tournament selection �Goldberg� 
�����

It is helpful to view the execution of the genetic algorithm as a two stage process� It
starts with the current population� Selection is applied to the current population to create an
intermediate population� Then recombination and mutation are applied to the intermediate
population to create the next population� The process of going from the current population
to the next population constitutes one generation in the execution of a genetic algorithm�
Goldberg �
���� refers to this basic implementation as a Simple Genetic Algorithm �SGA��
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Figure 
� One generation is broken down into a selection phase and recombination phase�
This �gure shows strings being assigned into adjacent slots during selection� In fact� they
can be assigned slots randomly in order to shu�e the intermediate population� Mutation �not
shown� can be applied after crossover�

We will �rst consider the construction of the intermediate population from the current
population� In the �rst generation the current population is also the initial population� After
calculating fi� �f for all the strings in the current population� selection is carried out� In the
canonical genetic algorithm the probability that strings in the current population are copied
�i�e�� duplicated� and placed in the intermediate generation is proportion to their �tness�

There are a number of ways to do selection� We might view the population as mapping
onto a roulette wheel� where each individual is represented by a space that proportionally
corresponds to its �tness� By repeatedly spinning the roulette wheel� individuals are chosen
using �stochastic sampling with replacement	 to �ll the intermediate population�

A selection process that will more closely match the expected �tness values is �remainder
stochastic sampling�	 For each string i where fi� �f is greater than 
��� the integer portion of
this number indicates how many copies of that string are directly placed in the intermediate
population� All strings �including those with fi� �f less than 
��� then place additional copies
in the intermediate population with a probability corresponding to the fractional portion of
fi� �f � For example� a string with fi� �f � 
��� places 
 copy in the intermediate population�
and then receives a ���� chance of placing a second copy� A string with a �tness of fi� �f � ��
�
has a ��
� chance of placing one string in the intermediate population�






�Remainder stochastic sampling	 is most e�ciently implemented using a method known
as Stochastic Universal Sampling� Assume that the population is laid out in random order
as in a pie graph� where each individual is assigned space on the pie graph in proportion
to �tness� Next an outer roulette wheel is placed around the pie with N equally spaced
pointers� A single spin of the roulette wheel will now simultaneously pick all N members of
the intermediate population� The resulting selection is also unbiased �Baker� 
�����

After selection has been carried out the construction of the intermediate population is
complete and recombination can occur� This can be viewed as creating the next population
from the intermediate population� Crossover is applied to randomly paired strings with
a probability denoted pc� �The population should already be su�ciently shu�ed by the
random selection process�� Pick a pair of strings� With probability pc �recombine	 these
strings to form two new strings that are inserted into the next population�

Consider the following binary string� 

�
��

��
�

�
� The string would represent a
possible solution to some parameter optimization problem� New sample points in the space
are generated by recombining two parent strings� Consider the string 

�
��

��
�

�
 and
another binary string� yxyyxyxxyyyxyxxy� in which the values � and 
 are denoted by x and
y� Using a single randomly chosen recombination point� 
�point crossover occurs as follows�

����� �� �����������

yxyyx �� yxxyyyxyxxy

Swapping the fragments between the two parents produces the following o�spring�

�����yxxyyyxyxxy and yxyyx�����������

After recombination� we can apply a mutation operator� For each bit in the population�
mutate with some low probability pm� Typically the mutation rate is applied with less than

� probability� In some cases� mutation is interpreted as randomly generating a new bit�
in which case� only 
�� of the time will the �mutation	 actually change the bit value� In
other cases� mutation is interpreted to mean actually �ipping the bit� The di�erence is no
more than an implementation detail as long as the user�reader is aware of the di�erence
and understands that the �rst form of mutation produces a change in bit values only half as
often as the second� and that one version of mutation is just a scaled version of the other�

After the process of selection� recombination and mutation is complete� the next popu�
lation can be evaluated� The process of evaluation� selection� recombination and mutation
forms one generation in the execution of a genetic algorithm�

��� Why does it work� Search Spaces as Hypercubes�

The question that most people who are new to the �eld of genetic algorithms ask at this
point is why such a process should do anything useful� Why should one believe that this is
going to result in an e�ective form of search or optimization�

The answer which is most widely given to explain the computational behavior of genetic
algorithms came out of John Holland�s work� In his classic 
��
 book� Adaptation in Nat	
ural and Arti�cial Systems� Holland develops several arguments designed to explain how a
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�genetic plan	 or �genetic algorithm	 can result in complex and robust search by implicitly
sampling hyperplane partitions of a search space�

Perhaps the best way to understand how a genetic algorithm can sample hyperplane
partitions is to consider a simple ��dimensional space �see Figure ��� Assume we have a
problem encoded with just � bits� this can be represented as a simple cube with the string
��� at the origin� The corners in this cube are numbered by bit strings and all adjacent
corners are labelled by bit strings that di�er by exactly 
�bit� An example is given in the
top of Figure �� The front plane of the cube contains all the points that begin with ��
If � 	 is used as a �don�t care	 or wild card match symbol� then this plane can also be
represented by the special string �  � Strings that contain  are referred to as schemata�
each schema corresponds to a hyperplane in the search space� The �order	 of a hyperplane
refers to the number of actual bit values that appear in its schema� Thus� 
  is order�

while 
  
      �  would be of order���

The bottom of Figure � illustrates a ��dimensional space represented by a cube �hanging	
inside another cube� The points can be labeled as follows� Label the points in the inner cube
and outer cube exactly as they are labeled in the top ��dimensional space� Next� pre�x each
inner cube labeling with a 
 bit and each outer cube labeling with a � bit� This creates an
assignment to the points in hyperspace that gives the proper adjacency in the space between
strings that are 
 bit di�erent� The inner cube now corresponds to the hyperplane 
   
while the outer cube corresponds to �   � It is also rather easy to see that  �  corresponds
to the subset of points that corresponds to the fronts of both cubes� The order�� hyperplane

�  corresponds to the front of the inner cube�

A bit string matches a particular schemata if that bit string can be constructed from
the schemata by replacing the � 	 symbol with the appropriate bit value� In general� all
bit strings that match a particular schemata are contained in the hyperplane partition rep�
resented by that particular schemata� Every binary encoding is a �chromosome	 which
corresponds to a corner in the hypercube and is a member of �L � 
 di�erent hyperplanes�
where L is the length of the binary encoding� �The string of all  symbols corresponds to
the space itself and is not counted as a partition of the space �Holland 
��
������ This can
be shown by taking a bit string and looking at all the possible ways that any subset of bits
can be replaced by � 	 symbols� In other words� there are L positions in the bit string and
each position can be either the bit value contained in the string or the � 	 symbol�

It is also relatively easy to see that �L � 
 hyperplane partitions can be de�ned over the
entire search space� For each of the L positions in the bit string we can have either the value
 � 
 or � which results in �L combinations�

Establishing that each string is a member of �L�
 hyperplane partitions doesn�t provide
very much information if each point in the search space is examined in isolation� This is
why the notion of a population based search is critical to genetic algorithms� A population
of sample points provides information about numerous hyperplanes� furthermore� low order
hyperplanes should be sampled by numerous points in the population� �This issue is reexam�
ined in more detail in subsequent sections of this paper�� A key part of a genetic algorithm�s
intrinsic or implicit parallelism is derived from the fact that many hyperplanes are sampled
when a population of strings is evaluated �Holland 
��
�� in fact� it can be argued that far
more hyperplanes are sampled than the number of strings contained in the population� Many
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Figure �� A 
	dimensional cube and a �	dimensional hypercube� The corners of the inner
cube and outer cube in the bottom �	D example are numbered in the same way as in the upper

	D cube� except a � is added as a pre�x to the labels of inner cube and a 
 is added as a
pre�x to the labels of the outer cube� Only select points are labeled in the �	D hypercube�
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di�erent hyperplanes are evaluated in an implicitly parallel fashion each time a single string
is evaluated �Holland 
��
����� but it is the cumulative e�ects of evaluating a population of
points that provides statistical information about any particular subset of hyperplanes��

Implicit parallelism implies that many hyperplane competitions are simultaneously solved
in parallel� The theory suggests that through the process of reproduction and recombination�
the schemata of competing hyperplanes increase or decrease their representation in the pop�
ulation according to the relative �tness of the strings that lie in those hyperplane partitions�
Because genetic algorithms operate on populations of strings� one can track the proportional
representation of a single schema representing a particular hyperplane in a population and
indicate whether that hyperplane will increase or decrease its representation in the popula�
tion over time when �tness based selection is combined with crossover to produce o�spring
from existing strings in the population�

� Two Views of Hyperplane Sampling

Another way of looking at hyperplane partitions is presented in Figure �� A function over a
single variable is plotted as a one�dimensional space� with function maximization as a goal�
The hyperplane �    ���  spans the �rst half of the space and 
    ���  spans the second
half of the space� Since the strings in the �    ���  partition are on average better than
those in the 
    ���  partition� we would like the search to be proportionally biased toward
this partition� In the second graph the portion of the space corresponding to   
  ���  is
shaded� which also highlights the intersection of �    ���  and   
  ���  � namely� � 
 ���  �
Finally� in the third graph� � 
�  ���  is highlighted�

One of the points of Figure � is that the sampling of hyperplane partitions is not really
e�ected by local optima� At the same time� increasing the sampling rate of partitions that
are above average compared to other competing partitions does not guarantee convergence
to a global optimum� The global optimum could be a relatively isolated peak� for example�
Nevertheless� good solutions that are globally competitive should be found�

It is also a useful exercise to look at an example of a simple genetic algorithm in action�
In Table 
� the �rst � bits of each string are given explicitly while the remainder of the bit
positions are unspeci�ed� The goal is to look at only those hyperplanes de�ned over the �rst
� bit positions in order to see what actually happens during the selection phase when strings
are duplicated according to �tness� The theory behind genetic algorithms suggests that the
new distribution of points in each hyperplane should change according to the average �tness
of the strings in the population that are contained in the corresponding hyperplane partition�
Thus� even though a genetic algorithm never explicitly evaluates any particular hyperplane
partition� it should change the distribution of string copies as if it had�

�Holland initially used the term intrinsic parallelism in his ���� monograph� then decided to switch to
implicit parallelism to avoid confusion with terminology in parallel computing� Unfortunately� the term
implicit parallelism in the parallel computing community refers to parallelism which is extracted from code
written in functional languages that have no explicit parallel constructs� Implicit parallelism does not refer to
the potential for running genetic algorithms on parallel hardware� although genetic algorithms are generally
viewed as highly parallelizable algorithms�
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Table 
� A population with �tness assigned to strings according to rank� Random is a
random number which determines whether or not a copy of a string is awarded for the
fractional remainder of the �tness�

The example population in Table 
 contains only �
 �partially speci�ed� strings� Since we
are not particularly concerned with the exact evaluation of these strings� the �tness values
will be assigned according to rank� �The notion of assigning �tness by rank rather than by
�tness proportional representation has not been discussed in detail� but the current example
relates to change in representation due to �tness and not how that �tness is assigned��
The table includes information on the �tness of each string and the number of copies to
be placed in the intermediate population� In this example� the number of copies produced
during selection is determined by automatically assigning the integer part� then assigning
the fractional part by generating a random value between ��� and 
�� �a form of remainder
stochastic sampling�� If the random value is greater than �
�remainder�� then an additional
copy is awarded to the corresponding individual�

Genetic algorithms appear to process many hyperplanes implicitly in parallel when selec�
tion acts on the population� Table � enumerates the �� hyperplanes ���� that can be de�ned
over the �rst three bits of the strings in the population and explicitly calculates the �tness
associated with the corresponding hyperplane partition� The true �tness of the hyperplane
partition corresponds to the average �tness of all strings that lie in that hyperplane parti�
tion� The genetic algorithm uses the population as a sample for estimating the �tness of
that hyperplane partition� Of course� the only time the sample is random is during the �rst
generation� After this� the sample of new strings should be biased toward regions that have
previously contained strings that were above average with respect to previous populations�

If the genetic algorithm works as advertised� the number of copies of strings that actually
fall in a particular hyperplane partition after selection should approximate the expected
number of copies that should fall in that partition�







Schemata and Fitness Values
Schema Mean Count Expect Obs Schema Mean Count Expect Obs
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Table �� The average �tnesses �Mean� associated with the samples from the �� hyperplanes
de�ned over the �rst three bit positions are explicitly calculated� The Expected representation
�Expect� and Observed representation �Obs� are shown� Count refers to the number of
strings in hyperplane H before selection�

In Table �� the expected number of strings sampling a hyperplane partition after selection
can be calculated by multiplying the number of hyperplane samples in the current population
before selection by the average �tness of the strings in the population that fall in that
partition� The observed number of copies actually allocated by selection is also given� In
most cases the match between expected and observed sampling rate is fairly good� the error
is a result of sampling error due to the small population size�

It is useful to begin formalizing the idea of tracking the potential sampling rate of a
hyperplane� H� Let M�H� t� be the number of strings sampling H at the current generation t
in some population� Let �t! intermediate� index the generation t after selection �but before
crossover and mutation�� and f�H� t� be the average evaluation of the sample of strings in
partition H in the current population� Formally� the change in representation according to
�tness associated with the strings that are drawn from hyperplane H is expressed by�

M�H� t! intermediate� � M�H� t�
f�H� t�

�f
�

Of course� when strings are merely duplicated no new sampling of hyperplanes is actu�
ally occurring since no new samples are generated� Theoretically� we would like to have a
sample of new points with this same distribution� In practice� this is generally not possible�
Recombination and mutation� however� provides a means of generating new sample points
while partially preserving distribution of strings across hyperplanes that is observed in the
intermediate population�
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��� Crossover Operators and Schemata

The observed representation of hyperplanes in Table � corresponds to the representation in
the intermediate population after selection but before recombination� What does recombi�
nation do to the observed string distributions� Clearly� order�
 hyperplane samples are not
a�ected by recombination� since the single critical bit is always inherited by one of the o��
spring� However� the observed distribution of potential samples from hyperplane partitions
of order�� and higher can be a�ected by crossover� Furthermore� all hyperplanes of the same
order are not necessarily a�ected with the same probability� Consider 
�point crossover� This
recombination operator is nice because it is relatively easy to quantify its e�ects on di�erent
schemata representing hyperplanes� To keep things simple� assume we are are working with
a string encoded with just 
� bits� Now consider the following two schemata�

������������ and ������������

The probability that the bits in the �rst schema will be separated during 
�point crossover
is only 
�L� 
� since in general there are L� 
 crossover points in a string of length L� The
probability that the bits in the second rightmost schema are disrupted by 
�point crossover
however is �L�
���L�
�� or 
��� since each of the L�
 crossover points separates the bits in
the schema� This leads to a general observation� when using 
�point crossover the positions
of the bits in the schema are important in determining the likelihood that those bits will
remain together during crossover�

����� ��point Crossover

What happens if a ��point crossover operator is used� A ��point crossover operator uses two
randomly chosen crossover points� Strings exchange the segment that falls between these two
points� Ken DeJong �rst observed �
��
� that ��point crossover treats strings and schemata
as if they form a ring� which can be illustrated as follows�

b� b� b� � � �

b	 b
 � �

b� b� � �

b�� b
 � �

b�� b�
 b� � � �

where b� to b�
 represents bits 
 to 
�� When viewed in this way� 
�point crossover
is a special case of ��point crossover where one of the crossover points always occurs at
the wrap�around position between the �rst and last bit� Maximum disruptions for order��
schemata now occur when the � bits are at complementary positions on this ring�

For 
�point and ��point crossover it is clear that schemata which have bits that are
close together on the string encoding �or ring� are less likely to be disrupted by crossover�
More precisely� hyperplanes represented by schemata with more compact representations
should be sampled at rates that are closer to those potential sampling distribution targets
achieved under selection alone� For current purposes a compact representation with respect


�



to schemata is one that minimizes the probability of disruption during crossover� Note that
this de�nition is operator dependent� since both of the two order�� schemata examined in
section ��
 are equally and maximally compact with respect to ��point crossover� but are
maximally di�erent with respect to 
�point crossover�

����� Linkage and De�ning Length

Linkage refers to the phenomenon whereby a set of bits act as �coadapted alleles	 that tend
to be inherited together as a group� In this case an allele would correspond to a particular
bit value in a speci�c position on the chromosome� Of course� linkage can be seen as a
generalization of the notion of a compact representation with respect to schema� Linkage
is is sometimed de�ned by physical adjacency of bits in a string encoding� this implicitly
assumes that 
�point crossover is the operator being used� Linkage under ��point crossover
is di�erent and must be de�ned with respect to distance on the chromosome when treated
as a ring� Nevertheless� linkage usually is equated with physical adjacency on a string� as
measured by de�ning length�

The de�ning length of a schemata is based on the distance between the �rst and last bits
in the schema with value either � or 
 �i�e�� not a  symbol�� Given that each position in
a schema can be �� 
 or  � then scanning left to right� if Ix is the index of the position of
the rightmost occurrence of either a � or 
 and Iy is the index of the leftmost occurrence
of either a � or 
� then the de�ning length is merely Ix � Iy� Thus� the de�ning length of
    
  �  
�  is 
� � 
 � �� The de�ning length of a schema representing a hyperplane
H is denoted here by "�H�� The de�ning length is a direct measure of how many possible
crossover points fall within the signi�cant portion of a schemata� If 
�point crossover is
used� then "�H��L � 
 is also a direct measure of how likely crossover is to fall within the
signi�cant portion of a schemata during crossover�

����� Linkage and Inversion

Along with mutation and crossover� inversion is often considered to be a basic genetic oper�
ator� Inversion can change the linkage of bits on the chromosome such that bits with greater
nonlinear interactions can potentially be moved closer together on the chromosome�

Typically� inversion is implemented by reversing a random segment of the chromosome�
However� before one can start moving bits around on the chromosome to improve linkage�
the bits must have a position independent decoding� A common error that some researchers
make when �rst implementing inversion is to reverse bit segments of a directly encoded
chromosome� But just reversing some random segment of bits is nothing more than large
scale mutation if the mapping from bits to parameters is position dependent�

A position independent encoding requires that each bit be tagged in some way� For
example� consider the following encoding composed of pairs where the �rst number is a bit
tag which indexes the bit and the second represents the bit value�

��� �� �� �� �� 
� �� 
� �
 
� �� 
� �� �� �
 �� �� ���


�



The linkage can now be changed by moving around the tag�bit pairs� but the string
remains the same when decoded� �
��
�

�� One must now also consider how recombination
is to be implemented� Goldberg and Bridges �
����� Whitley �
��
� as well as Holland �
��
�
discuss the problems of exploiting linkage and the recombination of tagged representations�

� The Schema Theorem

A foundation has been laid to now develop the fundamental theorem of genetic algorithms�
The schema theorem �Holland� 
��
� provides a lower bound on the change in the sampling
rate for a single hyperplane from generation t to generation t! 
�

Consider again what happens to a particular hyperplane� H when only selection occurs�

M�H� t! intermediate� � M�H� t�
f�H� t�

�f
�

To calculate M�H�t!
� we must consider the e�ects of crossover as the next generation
is created from the intermediate generation� First we consider that crossover is applied
probabilistically to a portion of the population� For that part of the population that does
not undergo crossover� the representation due to selection is unchanged� When crossover
does occur� then we must calculate losses due to its disruptive e�ects�

M�H� t ! 
� � �
� pc�M�H� t�
f�H� t�

�f
! pc

�
M�H� t�

f�H� t�
�f

�
 � losses� ! gains

�

In the derivation of the schema theorem a conservative assumption is made at this point�
It is assumed that crossover within the de�ning length of the schema is always disruptive to
the schema representing H� In fact� this is not true and an exact calculation of the e�ects
of crossover is presented later in this paper� For example� assume we are interested in the
schema 

     � If a string such as 


�
�
 were recombined between the �rst two bits with
a string such as 
������ or �
������ no disruption would occur in hyperplane 

     since
one of the o�spring would still reside in this partition� Also� if 
������ and �
����� were
recombined exactly between the �rst and second bit� a new independent o�spring would
sample 

     � this is the sources of gains that is referred to in the above calculation� To
simplify things� gains are ignored and the conservative assumption is made that crossover
falling in the signi�cant portion of a schema always leads to disruption� Thus�

M�H� t! 
� � �
� pc�M�H� t�
f�H� t�

�f
! pc

�
M�H� t�

f�H� t�
�f

�
� disruptions�

�

where disruptions overestimates losses� We might wish to consider one exception� if two
strings that both sample H are recombined� then no disruption occurs� Let P �H� t� denote
the proportional represention of H obtained by dividing M�H� t� by the population size�
The probability that a randomly chosen mate samples H is just P �H� t�� Recall that "�H�
is the de�ning length associated with 
�point crossover� Disruption is therefore given by�

"�H�

L� 

�
 � P �H� t���







At this point� the inequality can be simpli�ed� Both sides can be divided by the popula�
tion size to convert this into an expression for P �H� t ! 
�� the proportional representation
of H at generation t! 
� Furthermore� the expression can be rearranged with respect to pc�

P �H� t ! 
� � P �H� t�
f�H� t�

�f

�

� pc

"�H�

L � 

�
� P �H� t��

�

We now have a useful version of the schema theorem �although it does not yet consider
mutation�� but it is not the only version in the literature� For example� both parents are
typically chosen based on �tness� This can be added to the schema theorem by merely
indicating the alternative parent is chosen from the intermediate population after selection�

P �H� t! 
� � P �H� t�
f�H� t�

�f

�

� pc

"�H�

L� 

�
� P �H� t�

f�H� t�
�f

�

�

Finally� mutation is included� Let o�H� be a function that returns the order of the
hyperplane H� The order of H exactly corresponds to a count of the number of bits in the
schema representing H that have value � or 
� Let the mutation probability be pm where
mutation always �ips the bit� Thus the probability that mutation does a�ect the schema
representing H is �
�pm�o�H�� This leads to the following expression of the schema theorem�

P �H� t ! 
� � P �H� t�
f�H� t�

�f

�

� pc

"�H�

L � 

�
� P �H� t�

f�H� t�
�f

�

�
�
 � pm�

o�H�

��� Crossover� Mutation and Premature Convergence

Clearly the schema theorem places the greatest emphasis on the role of crossover and hy�
perplane sampling in genetic search� To maximize the preservation of hyperplane samples
after selection� the disruptive e�ects of crossover and mutation should be minimized� This
suggests that mutation should perhaps not be used at all� or at least used at very low levels�

The motivation for using mutation� then� is to prevent the permanent loss of any partic�
ular bit or allele� After several generations it is possible that selection will drive all the bits
in some position to a single value� either � or 
� If this happens without the genetic algo�
rithm converging to a satisfactory solution� then the algorithm has prematurely converged�
This may particularly be a problem if one is working with a small population� Without a
mutation operator� there is no possibility for reintroducing the missing bit value� Also� if the
target function is nonstationary and the �tness landscape changes over time �which is cer�
tainly the case in real biological systems�� then there needs to be some source of continuing
genetic diversity� Mutation� therefore acts as a background operator� occasionally changing
bit values and allowing alternative alleles �and hyperplane partitions� to be retested�

This particular interpretation of mutation ignores its potential as a hill�climbing mech�
anism� from the strict hyperplane sampling point of view imposed by the schema theorem
mutation is a necessary evil� But this is perhaps a limited point of view� There are several
experimental researchers that point out that genetic search using mutation and no crossover
often produces a fairly robust search� And there is little or no theory that has addressed the
interactions of hyperplane sampling and hill�climbing in genetic search�


�



Another problem related to premature convergence is the need for scaling the population
�tness� As the average evaluation of the strings in the population increases� the variance
in �tness decreases in the population� There may be little di�erence between the best and
worst individual in the population after several generations� and the selective pressure based
on �tness is correspondingly reduced� This problem can partially be addressed by using
some form of �tness scaling �Grefenstette� 
���� Goldberg� 
����� In the simplest case� one
can subtract the evaluation of the worst string in the population from the evaluations of
all strings in the population� One can now compute the average string evaluation as well
as �tness values using this adjusted evaluation� which will increase the resulting selective
pressure� Alternatively� one can use a rank based form of selection�

��� How Recombination Moves Through a Hypercube

The nice thing about 
�point crossover is that it is easy to model analytically� But it is
also easy to show analytically that if one is interested in minimizing schema disruption� then
��point crossover is better� But operators that use many crossover points should be avoided
because of extreme disruption to schemata� This is again a point of view imposed by a strict
interpretation of the schema theorem� On the other hand� disruption may not be the only
factor a�ecting the performance of a genetic algorithm�

����� Uniform Crossover

The operator that has received the most attention in recent years is uniform crossover�
Uniform crossover was studied in some detail by Ackley �
���� and popularized by Syswerda
�
����� Uniform crossover works as follows� for each bit position 
 to L� randomly pick each
bit from either of the two parent strings� This means that each bit is inherited independently
from any other bit and that there is� in fact� no linkage between bits� It also means that
uniform crossover is unbiased with respect to de�ning length� In general the probability of
disruption is 
 � �
���o�H���� where o�H� is the order of the schema we are interested in�
�It doesn�t matter which o�spring inherits the �rst critical bit� but all other bits must be
inherited by that same o�spring� This is also a worst case probability of disruption which
assumes no alleles found in the schema of interest are shared by the parents�� Thus� for any
order�� schemata the probability of uniform crossover separating the critical bits is always

 � �
���� � ���
� Consider for a moment a string of � bits� The de�ning length of a
schema must equal � before the disruptive probabilities of 
�point crossover match those
associated with uniform crossover ���� � ��
�� We can de�ne �� di�erent order�� schemata
over any particular string of � bits �i�e�� � choose ��� Of these schemata� only 
� of the ��
order�� schemata have a disruption rate higher than ���
 under 
�point crossover� Another


 have exactly the same disruption rate� and 
� of the �� order�� schemata have a lower
disruption rate� It is relative easy to show that� while uniform crossover is unbiased with
respect to de�ning length� it is also generally more disruptive than 
�point crossover� Spears
and DeJong �
��
� have shown that uniform crossover is in every case more disruptive than
��point crossover for order�� schemata for all de�ning lengths�
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Figure �� This graph illustrates paths though �	D space� A �	point crossover of ���� and




 can only generate o�spring that reside along the dashed paths at the edges of this graph�

Despite these analytical results� several researchers have suggested that uniform crossover
is sometimes a better recombination operator� One can point to its lack of representational
bias with respect to schema disruption as a possible explanation� but this is unlikely since
uniform crossover is uniformly worse than ��point crossover� Spears and DeJong �
��
��
��
speculate that� �With small populations� more disruptive crossover operators such as uniform
or n�point �n � �� may yield better results because they help overcome the limited infor�
mation capacity of smaller populations and the tendency for more homogeneity�	 Eshelman
�
��
� has made similar arguments outlining the advantages of disruptive operators�

There is another sense in which uniform crossover is unbiased� Assume we wish to
recombine the bits string ���� and 



� We can conveniently lay out the ��dimensional
hypercube as shown in Figure �� We can also view these strings as being connected by a set
of minimal paths through the hypercube� pick one parent string as the origin and the other
as the destination� Now change a single bit in the binary representation corresponding to the
point of origin� Any such move will reach a point that is one move closer to the destination�
In Figure � it is easy to see that changing a single bit is a move up or down in the graph�

All of the points between ���� and 



 are reachable by some single application of
uniform crossover� However� 
�point crossover only generates strings that lie along two com�
plementary paths �in the �gure� the leftmost and rightmost paths� through this ��dimensional
hypercube� In general� uniform crossover will draw a complementary pair of sample points
with equal probability from all points that lie along any complementary minimal paths in
the hypercube between the two parents� while 
�point crossover samples points from only
two speci�c complementary minimal paths between the two parent strings� It is also easy to
see that ��point crossover is less restrictive than 
�point crossover� Note that the number of
bits that are di�erent between two strings is just the Hamming distance� H� Not including
the original parent strings� uniform crossover can generate �H � � di�erent strings� while

�point crossover can generate ��H� 
� di�erent strings since there are H crossover points
that produce unique o�spring �see the discussion in the next section� and each crossover

produces � o�spring� The ��point crossover operator can generate �
�
H

�

�
� H� �H di�erent


�



o�spring since there are H choose � di�erent crossover points that will result in o�spring
that are not copies of the parents and each pair of crossover points generates � strings�

��� Reduced Surrogates

Consider crossing the following two strings and a �reduced	 version of the same strings�
where the bits the strings share in common have been removed�

���������������� ����������������

���������������� ����������������

Both strings lie in the hyperplane ���
  
�
 �
��
 � The �ip side of this observation
is that crossover is really restricted to a subcube de�ned over the bit positions that are
di�erent� We can isolate this subcube by removing all of the bits that are equivalent in
the two parent structures� Booker �
���� refers to strings such as ���������������� and
���������������� as the �reduced surrogates	 of the original parent chromosomes�

When viewed in this way� it is clear that recombination of these particular strings occurs in
a ��dimensional subcube� more or less identical to the one examined in the previous example�
Uniform crossover is unbiased with respect to this subcube in the sense that uniform crossover
will still sample in an unbiased� uniform fashion from all of the pairs of points that lie
along complementary minimal paths in the subcube de�ned between the two original parent
strings� On the other hand� simple 
�point or ��point crossover will not� To help illustrate
this idea� we recombine the original strings� but examine the o�spring in their �reduced	
forms� For example� simple 
�point crossover will generate o�spring ����������������

and ���������������� with a probability of ��

 since there are � crossover points in the
original parent strings between the third and fourth bits in the reduced subcube and L�

� 

� On the other hand� ���������������� and ���������������� are sampled with a
probability of only 
�

 since there is only a single crossover point in the original parent
structures that falls between the �rst and second bits that de�ne the subcube�

One can remove this particular bias� however� We apply crossover on the reduced surro�
gates� Crossover can now exploit the fact that there is really only 
 crossover point between
any signi�cant bits that appear in the reduced surrogate forms� There is also another bene�t�
If at least 
 crossover point falls between the �rst and last signi�cant bits in the reduced
surrogates� the o�spring are guaranteed not to be duplicates of the parents� �This assumes
the parents di�er by at least two bits�� Thus� new sample points in hyperspace are generated�

The debate on the merits of uniform crossover and operators such as ��point reduced sur�
rogate crossover is not a closed issue� To fully understand the interaction between hyperplane
sampling� population size� premature convergence� crossover operators� genetic diversity and
the role of hill�climbing by mutation requires better analytical methods�

� The Case for Binary Alphabets

The motivation behind the use of a minimal binary alphabet is based on relatively simple
counting arguments� A minimal alphabet maximizes the number of hyperplane partitions di�


�



rectly available in the encoding for schema processing� These low order hyperplane partitions
are also sampled at a higher rate than would occur with an alphabet of higher cardinality�

Any set of order�
 schemata such as 
   and �   cuts the search space in half� Clearly�
there are L pairs of order�
 schemata� For order�� schemata� there are

�
L

�

�
ways to pick

locations in which to place the � critical bits positions� and there are �� possible ways to
assign values to those bits� In general� if we wish to count how many schemata representing
hyperplanes exist at some order i� this value is given by �i

�
L

i

�
where

�
L

i

�
counts the number

of ways to pick i positions that will have signi�cant bit values in a string of length L and �i

is the number of ways to assign values to those positions� This ideal can be illustrated for
order�
 and order�� schemata as follows�

Order � Schemata Order 
 Schemata

���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

These counting arguments naturally lead to questions about the relationship between
population size and the number of hyperplanes that are sampled by a genetic algorithm�
One can take a very simple view of this question and ask how many schemata of order�

are sampled and how well are they represented in a population of size N� These numbers
are based on the assumption that we are interested in hyperplane representations associated
with the initial random population� since selection changes the distributions over time� In
a population of size N there should be N�� samples of each of the �L order�
 hyperplane
partitions� Therefore 
�� of the population falls in any particular order�
 partition� Each
order�� partition is sampled by �
� of the population� In general then� each hyperplane of
order i is sampled by �
���i of the population�

��� The N � Argument

These counting arguments set the stage for the claim that a genetic algorithm processes on
the order of N� hyperplanes when the population size is N� The derivation used here is based
on work found in the appendix of Fitzpatrick and Grefenstette �
�����

Let � be the highest order of hyperplane which is represented in a population of size N by
at least � copies� � is given by log�N���� We wish to have at least � samples of a hyperplane
before claiming that we are statistically sampling that hyperplane�

Recall that the number of di�erent hyperplane partitions of order�� is given by ��
�
L

�

�
which is just the number of di�erent ways to pick � di�erent positions and to assign all
possible binary values to each subset of the � positions� Thus� we now need to show

��
�
L
�

�
� N� which implies ��

�
L
�

�
� ������

��



since � � log�N��� and N � ���� Fitzpatrick and Grefenstette now make the following
arguments� Assume L � �� and �� � N � ���� Pick � � �� which implies � � � � 
�� By
inspection the number of schemata processed is greater than N��

This argument does not hold in general for any population of size N� Given a string of
length L� the number of hyperplanes in the space is �nite� However� the population size can
be chosen arbitrarily� The total number of schemata associated with a string of length L
is �L� Thus if we pick a population size where N � �L then at most N hyperplanes can
be processed �Michael Vose� personal communication�� Therefore� N must be chosen with
respect to L to make the N� argument reasonable� At the same time� the range of values
�� � N � ��� does represent a wide range of practical population sizes�

Still� the argument that N� hyperplanes are usefully processed assumes that all of these
hyperplanes are processed with some degree of independence� Notice that the current deriva�
tion counts only those schemata that are exactly of order��� The sum of all schemata from
order�
 to order�� that should be well represented in a random initial population is given
by�

P�
x
� �

x
�
L

x

�
� By only counting schemata that are exactly of order�� we might hope to

avoid arguments about interactions with lower order schemata� However� all the N� argu�
ment really shows is that there may be as many as N� hyperplanes that are well represented
given an appropriate population size� But a simple static count of the number of schemata
available for processing fails to consider the dynamic behavior of the genetic algorithm�

As discussed later in this tutorial� dynamic models of the genetic algorithm now exist
�Vose and Liepins� 
��
� Whitley� Das and Crabb 
����� There has not yet� however� been
any real attempt to use these models to look at complex interactions between large numbers of
hyperplane competitions� It is obvious in some vacuous sense that knowing the distribution
of the initial population as well as the �tnesses of these strings �and the strings that are
subsequently generated by the genetic algorithm� is su�cient information for modeling the
dynamic behavior of the genetic algorithm �Vose 
����� This suggests that we only need
information about those strings sampled by the genetic algorithm� However� this micro�level
view of the genetic algorithm does not seems to explain its macro�level processing power�

��� The Case for Nonbinary Alphabets

There are two basic arguments against using higher cardinality alphabets� First� there
will be fewer explicit hyperplane partitions� Second� the alphabetic characters �and the
corresponding hyperplane partitions� associated with a higher cardinality alphabet will not
be as well represented in a �nite population� This either forces the use of larger population
sizes or the e�ectiveness of statistical sampling is diminished�

The arguments for using binary alphabets assume that the schemata representing hyper�
planes must be explicitly and directly manipulated by recombination� Antonisse �
���� has
argued that this need not be the case and that higher order alphabets o�er as much richness
in terms of hyperplane samples as lower order alphabets� For example� using an alphabet of
the four characters A� B� C� D one can de�ne all the same hyperplane partitions in a binary
alphabet by de�ning partitions such as �A and B�� �C and D�� etc� In general� Antonisse
argues that one can look at the all subsets of the power set of schemata as also de�ning hy�
perplanes� Viewed in this way� higher cardinality alphabets yieldmore hyperplane partitions

�




than binary alphabets� Antonisse�s arguments fail to show however� that the hyperplanes
that corresponds to the subsets de�ned in this scheme actually provide new independent
sources of information which can be processed in a meaningful way by a genetic algorithm�
This does not disprove Antonisse�s claims� but does suggest that there are unresolved issues
associated with this hypothesis�

There are other arguments for nonbinary encodings� Davis �
��
� argues that the dis�
advantages of nonbinary encodings can be o�set by the larger range of operators that can
be applied to problems� and that more problem dependent aspects of the coding can be
exploited� Scha�er and Eshelman �
���� as well as Wright �
��
� present interesting argu�
ments for real�valued encodings� Goldberg �
��
� suggests that virtual minimal alphabets
that facilitate hyperplane sampling can emerge from higher cardinality alphabets�

� Criticisms of the Schema Theorem

There are some obvious limitations of the schema theorem which restrict its usefulness�
First� it is an inequality� By ignoring string gains and undercounting string losses� a great
deal of information is lost� The inexactness of the inequality is such that if one were to
try to use the schema theorem to predict the representation of a particular hyperplane over
multiple generations� the resulting predictions would in many cases be useless or misleading
�e�g� Grefenstette 
���� Vose� personal communication� 
����� Second� the observed �tness
of a hyperplane H at time t can change dramatically as the population concentrates its
new samples in more specialized subpartitions of hyperspace� Thus� looking at the average
�tness of all the strings in a particular hyperplane �or using a random sample to estimate
this �tness� is only relevant to the �rst generation or two �Grefenstette and Baker� 
�����
After this� the sampling of strings is biased and the inexactness of the schema theorem makes
it impossible to predict computational behavior�

In general� the schema theorem provides a lower bound that holds for only one gener�
ation into the future� Therefore� one cannot predict the representation of a hyperplane H
over multiple generations without considering what is simultaneous happening to the other
hyperplanes being processed by the genetic algorithm�

These criticisms imply that the views of hyperplane sampling presented in section � of
this tutorial may be good rhetorical tools for explaining hyperplane sampling� but they fail to
capture the full complexity of the genetic algorithm� This is partly because the discussion in
section � focuses on the impact of selection without considering the disruptive and generative
e�ects of crossover� The schema theorem does not provide an exact picture of the genetic
algorithms behavior and cannot predict how a speci�c hyperplane is processed over time� In
the next section� a introduction is to an exact version of the schema theorem�

� An Executable Model of the Genetic Algorithm

Consider the complete version of the schema theorem before dropping the gains term and
simplifying the losses calculation�

��



P �Z� t! 
� � P �Z� t�
f�Z� t�

�f
�
� fpc lossesg� ! fpc gains�g

In the current formulation� Z will refer to a string� Assume we apply this equation to
each string in the search space� The result is an exact model of the computational behavior
of a genetic algorithm� Since modeling strings models the highest order schemata� the model
implicitly includes all lower order schemata� Also� the �tnesses of strings are constants in
the canonical genetic algorithm using �tness proportional reproduction and one need not
worry about changes in the observed �tness of a hyperplane as represented by the current
population� Given a speci�cation of Z� one can exactly calculate losses and gains� Losses
occur when a string crosses with another string and the resulting o�spring fails to preserve
the original string� Gains occur when two di�erent strings cross and independently create
a new copy of some string� For example� if Z � ��� then recombining 
�� and ��
 will
always produce a new copy of ���� Assuming 
�point crossover is used as an operator� the
probability of �losses	 and �gains	 for the string Z � ��� are calculated as follows�
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The use of PI� in the preceding equations represents the probability of crossover in any
position on the corresponding string or string pair� Since Z is a string� it follows that PI� �

�� and crossover in the relevant cases will always produce either a loss or a gain �depending
on the expression in which the term appears�� The probability that one�point crossover will
fall between the �rst and second bit will be denoted by PI�� In this case� crossover must
fall in exactly this position with respect to the corresponding strings to result in a loss or
a gain� Likewise� PI� will denote the probability that one�point crossover will fall between
the second and third bit and the use of PI� in the computation implies that crossover must
fall in this position for a particular string or string pair to e�ect the calculation of losses or
gains� In the above illustration� PI� � PI� � ��
�

The equations can be generalized to cover the remaining � strings in the space� This trans�
lation is accomplished using bitwise addition modulo � �i�e�� a bitwise exclusive�or denoted
by �� See Figure � and section ����� The function �Si � Z� is applied to each bit string� Si�
contained in the equation presented in this section to produce the appropriate corresponding
strings for generating an expression for computing all terms of the form P�Z�t!
��
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	�� A Generalized Form Based on Equation Generators

The � bit equations are similar to the � bit equations developed by Goldberg �
����� The
development of a general form for these equations is illustrated by generating the loss and
gain terms in a systematic fashion �Whitley� Das and Crabb� 
����� Because the number of
terms in the equations is greater than the number of strings in the search space� it is only
practical to develop equations for encodings of approximately 

 bits� The equations need
only be de�ned once for one string in the space� the standard form of the equation is always
de�ned for the string composed of all zero bits� Let S represent the set of binary strings of
length L� indexed by i� In general� the string composed of all zero bits is denoted S��

	�� Generating String Losses for �
point crossover

Consider two strings ����������� and ���
����
��� Using 
�point crossover� if the crossover
occurs before the �rst �
	 bit or after the last �
	 bit� no disruption will occur� Any crossover
between the 
 bits� however� will produce disruption� neither parent will survive crossover�
Also note that recombining ����������� with any string of the form ���
####
�� will
produce the same pattern of disruption� We will refer to this string as a generator� it is
like a schema� but # is used instead of  to better distinguish between a generator and the
corresponding hyperplane� Bridges and Goldberg �
���� formalize the notion of a generator
as follows� Consider strings B and B� where the �rst x bits are equal� the middle ��!
� bits
have the pattern b##���#b for B and �b##���#�b for B�� Given that the strings are of length
L� the last �L � � � x � 
� bits are equivalent� The �b bits are referred to as �sentry bits	
and they are used to de�ne the probability of disruption� In standard form� B � S� and
the sentry bits must be 
� The following directed acyclic graph illustrates all generators for
�string losses	 for the standard form of a 
 bit equation for S��

�����

� �

� �

����� �����

� � � �

� � � �

����� ����� �����

� � � � � �

� � � � � �

����� ����� ����� �����

The graph structure allows one to visualize the set of all generators for string losses� In
general� the root of this graph is de�ned by a string with a sentry bit in the �rst and last bit
positions� and the generator token �#	 in all other intermediate positions� A move down
and to the left in the graph causes the leftmost sentry bit to be shifted right� a move down
and to the right causes the rightmost sentry bit to be shifted left� All bits outside the sentry
positions are ��	 bits� Summing over the graph� one can see that there are

PL��
j
� j � �L�j��

or ��L � L� 
� strings generated as potential sources of string losses�
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For each string Si produced by one of the �middle	 generators in the above graph struc�
ture� a term of the following form is added to the losses equations�

��Si�

L� 


f�Si�
�f

P �Si� t�

where ��Si� is a function that counts the number of crossover points between sentry bits in
string Si�

	�� Generating String Gains for �
point crossover

Bridges and Goldberg �
���� note that string gains for a string B are produced from two
strings Q and R which have the following relationship to B�

Region �� beginning middle end
Length �� a r w

Q Characteristics ##���#�b � �
R Characteristics � � �b#���#

The ��	 symbol denotes regions where the bits in Q and R match those in B� again B �
S� for the standard form of the equations� Sentry bits are located such that 
�point crossover
between sentry bits produces a new copy of B� while crossover of Q and R outside the sentry
bits will not produce a new copy of B�

Bridges and Goldberg de�ne a beginning function A$B�	% and ending function & $B�
%�
assuming L� 
 � 	� 
� where for the standard form of the equations�

A $S�� 	% � ##���##
���������L�� and & $S�� 
% � ������L����
L��##���##�

These generators can again be presented as a directed acyclic graph structure composed
of paired templates which will be referred to as the upper A�generator and lower &�generator�
The following are the generators in a 
 bit problem�
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In this case� the root of the directed acyclic graph is de�ned by starting with the most
speci�c generator pair� The A�generator of the root has a �
	 bit as the sentry bit in the
�rst position� and all other bits are ���	 The &�generator of the root has a �
	 bit as the
sentry bit in the last position� and all other bits are ���	 A move down and left in the graph
is produced by shifting the left sentry bit of the current upper A�generator to the right�
A move down and right is produced by shifting the right sentry bit of the current lower
&�generator to the left� Each vacant bit position outside of the sentry bits which results
from a shift operation is �lled using the # symbol�

For any level k of the directed graph there are k generators and the number of string pairs
generated at that level is �k�� for each pair of generators �the root is level 
�� Therefore� the
total number of string pairs that must be included in the equations to calculate string gains
for S� of length L is

PL��
k
� k � �

k���

Let S��x and S��y be two strings produced by a generator pair� such that S��x was
produced by the A�generator and has a sentry bit at location 	�
 and S��y was produced by
the &�generator with a sentry bit at L�
� �The x and y terms are correction factors added to
	 and 
 in order to uniquely index a string in S�� Let the critical crossover region associated
with S��x and S��y be computed by the function ��S��x� S��y� � L�
� �	� 
�� For each
string pair S��x and S��y a term of the following form is added to the gains equations�

��S��x� S��y�

L� 


f�S��x�
�f

P �S��x� t�
f�S��y�

�f
P �S��y� t�

where ��S��x� S��y� counts the number of crossover points that fall in the critical region
de�ned by the sentry bits located at 	 � 
 and L� 
�

The generators are used as part of a two stage computation where the generators are
�rst used to create an exact equation in standard form� A simple transformation function
maps the equations to all other strings in the space�

	�� The Vose and Liepins Models

The executable equations developed by Whitley �
���a� represent a special case of the model
of a simple genetic algorithm introduced by Vose and Liepins �
��
�� In the Vose and Liepins
model� the vector st � � represents the t th generation of the genetic algorithm and the i
th component of st is the probability that the string i is selected for the gene pool� Using
i to refer to a string in s can sometimes be confusing� The symbol S has already been
used to denote the set of binary strings� also indexed by i� This notation will be used
where appropriate to avoid confusion� Note that st corresponds to the expected distribution
of strings in the intermediate population in the generational reproduction process �after
selection has occurred� but before recombination��

In the Vose and Liepins formulation�

sti � P �Si� t�f�Si�

where � is the equivalence relation such that x � y if and only if 	
 � � j x � 
y� In this
formulation� the term 
� �f � which would represent the average population �tness normally
associated with �tness proportional reproduction� can be absorbed by the 
 term�
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Let V � �L� the number of strings in the search space� The vector pt � �V is de�ned
such that the k th component of the vector is equal to the proportional representation of
string k at generation t before selection occurs� The k component of pt would be the same
as P �Sk� t� in the notation more commonly associated with the schema theorem� Finally
let ri�j�k� be the probability that string k results from the recombination of strings i and j�
Now� using E to denote expectation�

E pt��k �
X
i�j

sti s
t
j ri�j�k��

To further generalize this model� the function ri�j�k� is used to construct a mixing matrix
M where the i� jth entry mi�j � ri�j���� Note that this matrix gives the probabilities that
crossing strings i and j will produce the string S�� Technically� the de�nition of ri�j�k� assumes
that exactly one o�spring is produced� But note that M has two entries for each string pair
i� j where i 
� j� which is equivalent to producing two o�spring� For current purposes� assume
no mutation is used and 
�point crossover is used as the recombination operator� The matrix
M is symmetric and is zero everywhere on the diagonal except for entry m��� which is 
���
Note thatM is expressed entirely in terms of string gain information� Therefore� the �rst row
and column of the matrix has entries inversely related to the string losses probabilities� each
entry is given by 
� ���
 ��Si��L� 
�� where each string in the set S is crossed with S�� For
completeness� ��Si� for strings not produced by the string loss generators is � and� thus� the
probability of obtaining S� during reproduction is 
��� The remainder of the matrix entries
are given by ��
 ��S��x�S��y�

L��
� For each pair of strings produced by the string gains generators

determine their index and enter the value returned by the function into the corresponding
location in M� For completeness� ��Sj � Sk� � � for all pairs of strings not generated by the
string gains generators �i�e�� mj�k � ���

Once de�ned M does not change since it is not a�ected by variations in �tness or pro�
portional representation in the population� Thus� given the assumption of no mutations�
that s is updated each generation to correct for changes in the population average� and that

�point crossover is used� then the standard form of the executable equations corresponds to
the following portion of the Liepins and Vose model �T denotes transpose��

sTMs�

An alternative form of M denoted M � can be de�ned by having only a single entry for
each string pair i� j where i 
� j� This is done by doubling the value of the enties in the lower
triangle and setting the entries in the upper triangle of the matrix to ���� Assuming each
component of s is given by si � P �Si� t��f�Si�� �f ��� this has the rhetorical advantage that

sTM ���� 
�s� � P �S�� t��f�S��� �f ��
� losses��

where M ���� 
� is the �rst column of M � and s� is the �rst component of s� Not including the
above subcomputation� the remainder of the computation of sTM �s calculates string gains�

Vose and Liepins formalize the notion that bitwise exclusive�or can be used to remap all
the strings in the search space� in this case represented by the vector s� They show that if
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Figure 
� The operator � is bit	wise exclusive	or� Let ri�j�k� be the probability that k results
from the recombination of strings i and j� If recombination is a combination of crossover
and mutation then ri�j�k � �� � ri�k�j�k���� The strings are reordered with respect to 
�
�

recombination is a combination of crossover and mutation then

ri�j�k � q� � ri�k�j�k�q� and speci�cally ri�j�k� � ri�j�k � �� � ri�k�j�k����

This allows one to reorder the elements in s with respect to any particular point in the
space� This reordering is equivalent to remapping the variables in the executable equations
�See Figure ��� A permutation function� �� is de�ned as follows�

�j� s�� ���� sV�� �
T � � sj��� ���� sj��V��� �

T

where the vectors are treated as columns and V � �L� the size of the search space� A general
operator M can be de�ned over s which remaps sTMs to cover all strings in the space�

M�s� � � ��� s�
TM�� s� ���� ��V�� s�

TM�V�� s �
T

Recall that s denoted the representation of strings in the population during the inter�
mediate phase as the genetic algorithm goes from generation t to t! 
 �after selection� but
before recombination�� To complete the cycle and reach a point at which the Vose and
Liepins models can be executed in an iterative fashion� �tness information is now explicitly
introduced to transform the population at the beginning of iteration t ! 
 to the next in�
termediate population� A �tness matrix F is de�ned such that �tness information is stored
along the diagonal� the i� i th element is given by f�i� where f is the evaluation function�

The transformation from the vector pt�� to the next intermediate population represented
by st�� is given as follows�

st�� � FM�st��

Vose and Liepins give equations for calculating the mixing matrix M which not only
includes probabilities for 
�point crossover� but also mutation� More complex extension of
the Vose and Liepins model include �nite population models using Markov chains �Nix and
Vose� 
����� Vose �
���� surveys the current state of this research�
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� Other Models of Evolutionary Computation

There are several population based algorithms that are either spin�o�s of Holland�s genetic
algorithm� or which were developed independently� Evolution Strategies and Evolutionary
Programming refer to two computational paradigms that use a population based search�

Evolutionary Programming is based on the early book by L� Fogel� Owens and Walsh
�
���� entitled� Arti�cial Intelligence Through Simulated Evolution� The individuals� or
�organisms�	 in this study were �nite state machines� Organisms that best solved some
target function obtained the opportunity to reproduce� Parents were mutated to create
o�spring� There has been renewed interest in Evolution Programming as re�ected by the

��� First Annual Conference on Evolutionary Programming �Fogel and Atmar 
�����

Evolution Strategies are based on the work of Rechenberg �
���� and Schwefel �
��
�

��
� and are discussed in a survey by B'ack� Ho�meister and Schwefel �
��
�� Two examples
of Evolution Strategies �ES� are the ��!���ES and ��� ���ES� In ��!���ES � parents produce
� o�spring� the population is then reduced again to � parents by selecting the best solutions
from among both the parents and o�spring� Thus� parents survive until they are replaced
by better solutions� The ��� ���ES is closer to the generational model used in canonical
genetic algorithms� o�spring replace parents and then undergo selection� Recombination
operators for evolutionary strategies also tend to di�er from Holland�style crossover� allowing
operations such as averaging parameters� for example� to create an o�spring�

��� Genitor

Genitor �Whitley 
���� 
���� was the �rst of what Syswerda �
���� has termed �steady
state	 genetic algorithms� The name �steady state	 is somewhat misleading� since these
algorithms show more variance than canonical genetic algorithms in the terms of hyperplane
sampling behavior �Syswerda� 
��
� and are therefore more susceptible to sample error and
genetic drift� The advantage is that the best points found in the search are maintained in the
population� This results in a more aggressive search that in practice is often quite e�ective�

There are three di�erences between Genitor�style algorithms and canonical genetic algo�
rithms� First� reproduction produces one o�spring at a time� Two parents are selected for
reproduction and produce an o�spring that is immediately placed back into the population�
The second major di�erence is in how that o�spring is placed back in the population� O��
spring do not replace parents� but rather the least �t �or some relatively less �t� member of
the population� In Genitor� the worst individual in the population is replaced� The third
di�erence between Genitor and most other forms of genetic algorithms is that �tness is as�
signed according to rank rather than by �tness proportionate reproduction� Ranking helps
to maintain a more constant selective pressure over the course of search�

Goldberg and Deb �
��
� have shown replacing the worst member of the population
generates much higher selective pressure than random replacement� But higher selective
pressure is not the only di�erence between Genitor and the canonical genetic algorithm�
To borrow terminology used by the Evolution Strategy community �as suggested by Larry
Eshelman�� Genitor is a �� ! �� strategy while the canonical genetic algorithm is a ��� ��
strategy� Thus� the accumulation of improved strings in the population is monotonic�
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��� CHC

Another genetic algorithm that monotonically collects the best strings found so far is the
CHC algorithm developed by Larry Eshelman �
��
�� CHC stands for Cross generational eli	
tist selection� Heterogeneous recombination �by incest prevention� and Cataclysmic mutation�
which is used to restart the search when the population starts to converge�

CHC explicitly borrows from the �� ! �� strategy of Evolution Strategies� After recom�
bination� the N best unique individuals are drawn from the parent population and o�spring
population to create the next generation� Duplicates are removed from the population� As
Goldberg has shown with respect to Genitor� this kind of �survival of the �ttest	 replace�
ment method already imposes considerable selective pressure� so that there is no real need
to use any other selection mechanisms� Thus CHC uses random selection� except restrictions
are imposed on which strings are allowed to mate� Strings with binary encodings must be
a certain Hamming distance away from one another before they are allowed to reproduce�
This form of �incest prevention	 is designed to promote diversity� Eshelman also uses a form
of uniform crossover called HUX where exactly half of the di�ering bits are swapped during
crossover� CHC is typically run using small population sizes �e�g� 
��� thus using uniform
crossover in this context is consistent with DeJong and Spears �
��
� conjecture that uniform
crossover can provide better sampling coverage in the context of small populations�

The rationale behind CHC is to have a very aggressive search �by using monotonic se�
lection through survival of the best strings� and to o�set the aggressiveness of the search
by using highly disruptive operators such as uniform crossover� With such small population
sizes� however� the population converges to the point that it begins to more or less repro�
duce many of the same strings� At this point the CHC algorithm uses cataclysmic mutation�
All strings undergo heavy mutation� except that the best string is preserved intact� After
mutation� genetic search is restarted using only crossover�

��� Hybrid Algorithms

L� �Dave	 Davis states in the Handbook of Genetic Algorithms� �Traditional genetic algo�
rithms� although robust� are generally not the most successful optimization algorithm on
any particular domain	 �
��
�
��� Davis argues that hybridizing genetic algorithms with
the most successful optimization methods for particular problems gives one the best of both
worlds� correctly implemented� these algorithms should do no worst than the �usually more
traditional� method with which the hybridizing is done� Of course� it also introduces the
additional computational overhead of a population based search�

Davis often uses real valued encodings instead of binary encodings� and employs �recom�
bination operators	 that may be domain speci�c� Other researchers� such as Michalewicz
�
���� also use nonbinary encodings and specialized operations in combination with a genetic
based model of search� M'uhlenbein takes a similar opportunistic view of hybridization� In
a description of a parallel genetic algorithm M'uhlenbein �
��
����� states� after the initial
population is created� �Each individual does local hill�climbing�	 Furthermore� after each
o�spring is created� �The o�spring does local hill�climbing�	
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Experimental researchers and theoreticians are particularly divided on the issue of hy�
bridization� By adding hill�climbing or hybridizing with some other optimization methods�
learning is being added to the evolution process� Coding the learned information back onto
the chromosome means that the search utilizes a form of Lamarckian evolution� The chromo�
somes improved by local hill�climbing or other methods are placed in the genetic population
and allowed to compete for reproductive opportunities�

The main criticism is that if we wish to preserve the schema processing capabilities of
the genetic algorithm� then Lamarckian learning should not be used� Changing information
in the o�spring inherited from the parents results in a loss of inherited schemata� This alters
the statistical information about hyperplane partitions that is implicitly contained in the
population� Therefore using local optimization to improve each o�spring undermines the
genetic algorithm�s ability to search via hyperplane sampling�

Despite the theoretical objections� hybrid genetic algorithms typically do well at opti�
mization tasks� There may be several reasons for this� First� the hybrid genetic algorithm
is hill�climbing from multiple points in the search space� Unless the objective function is
severely multimodal it may be likely that some strings �o�spring� will be in the basin of
attraction of the global solution� in which case hill�climbing is a fast and e�ective form of
search� Second� a hybrid strategy impairs hyperplane sampling� but does not disrupt it
entirely� For example� using local optimization to improve the initial population of strings
only biases the initial hyperplane samples� but does not interfere with subsequent hyperplane
sampling� Third� in general hill�climbing may �nd a small number of signi�cant improve�
ments� but may not dramatically change the o�spring� In this case� the e�ects on schemata
and hyperplane sampling may be minimal�

	 Hill
climbers or Hyperplane Samplers�

In a recent paper entitled� �How genetic algorithms really work� I� Mutation and Hill�
climbing�	 M'uhlenbein shows that an Evolution Strategy algorithm using only mutation
works quite well on a relatively simple test suite� M'uhlenbein states that for many prob�
lems �many nonstandard genetic algorithms work well and the standard genetic algorithm
performs poorly�	 �
��������

This raises a very interesting issue� When is a genetic algorithm a hyperplane sampler
and when it is a hill�climber� This is a nontrivial question since it is the hyperplane sampling
abilities of genetic algorithms that are usually touted as the source of global sampling� On
the other hand� some researchers argue that crossover is unnecessary and that mutation is
su�cient for robust and e�ective search� All the theory concerning hyperplane sampling has
been developed with respect to the canonical genetic algorithm� Alternative forms of genetic
algorithms often use mechanisms such as monotonic selection of the best strings which could
easily lead to increased hill�climbing� Vose�s work �personal communication� June 
���� with
exact models of the canonical genetic algorithm indicates that even low levels of mutation
can have a signi�cant impact on convergence and change the number of �xed points in the
space� �For the functions Vose has examined so far mutation always reduces the number of
�xed points��
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In practice there may be clues as to when hill�climbing is a dominant factor in a search�
Hyperplane sampling requires larger populations� Small populations are much more likely
to rely on hill�climbing� A population of �� individuals just doesn�t provide very much
information about hyperplane partitions� except perhaps very low order hyperplanes �there
are only 
 samples of each order�� hyperplane in a population of ���� Second� very high
selective pressure suggests hill�climbing may dominate the search� If the 
 best individuals
in a population of 
�� strings reproduce �
� of the time� then the e�ective population size
may not be large enough to support hyperplane sampling�

�� Parallel Genetic Algorithms

Part of the biological metaphor used to motivate genetic search is that it is inherently paral�
lel� In natural populations� thousands or even millions of individuals exist in parallel� This
suggests a degree of parallelism that is directly proportional to the population size used in
genetic search� In this paper� three di�erent ways of exploiting parallelism in genetic algo�
rithms will be reviewed� First� a parallel genetic algorithm similar to the canonical genetic
algorithm will be reviewed� next an Island Model using distinct subpopulations will be pre�
sented� Finally� a �ne grain massively parallel implementation that assumes one individual
resides at each processor will be explored� It can be shown that the �ne grain models are a
subclass of cellular automata �Whitley 
���b�� Therefore� while these algorithms have been
referred to by a number of somewhat awkward names �e�g�� �ne grain genetic algorithms�
or massively parallel genetic algorithms� the name cellular genetic algorithm is used in this
tutorial�

In each of the following models� strings are mapped to processors in a particular way�
Usually this is done in a way that maximizes parallelismwhile avoiding unnecessary processor
communication� However� any of these models could be implemented in massively parallel
fashion� What tends to be di�erent is the role of local versus global communication�

���� Global Populations with Parallelism

The most direct way to implement a parallel genetic algorithm is to implement something
close to a canonical genetic algorithm� The only change that will be made is that selection
will be done by Tournament Selection �Goldberg� 
���� Goldberg and Deb� 
��
��

Tournament selection implements a noisy form of ranking� Recall that the implementa�
tion of one generation in a canonical genetic algorithm can be seen as a two step process�
First� selection is used to create an intermediate population of duplicate strings selected
according to �tness� Second� crossover and mutation are applied to produce the next gen�
eration� Instead of using �tness proportionate reproduction or directly using ranking� tour�
naments are held to �ll the intermediate population� Assume two strings are selected out
of the current population after evaluation� The best of the two strings is then placed in
the intermediate population� This process of randomly selecting two strings from the cur�
rent population and placing the best in the intermediate population is repeated until the
intermediate population is full� Goldberg and Deb �
��
� show analytically that this form
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of tournament selection is the same in expectation as ranking using a linear ��� bias� If a
winner is chosen probabilistically from a tournament of �� then the ranking is linear and the
bias is proportional to the probability with which the best string is chosen�

With the addition of tournament selection� a parallel form of the canonical genetic al�
gorithm can now be implemented in a fairly direct fashion� Assume the processors are
numbered 
 to N�� and the population size� N� is even� � strings reside at each processor�
Each processor holds two independent tournaments by randomly sampling strings in the
population and each processor then keeps the winners of the two tournaments� The new
strings that now reside in the processors represent the intermediate generation� Crossover
and evaluation can now occur in parallel�

���� Island Models

One motivation for using Island Models is to exploit a more coarse grain parallel model�
Assume we wish to use 
� processors and have a population of 
���� strings� or we might
wish to use �� processors and ����� strings� One way to do this is to break the total
population down into subpopulations of 
�� strings each� Each one of these subpopulations
could then execute as a normal genetic algorithm� It could be a canonical genetic algorithm�
or Genitor� or CHC� Occasionally� perhaps every �ve generations or so� the subpopulations
would swap a few strings� This migration allows subpopulations to share genetic material
�Whitley and Starkweather� 
���� Gorges�Schleuter� 
��
� Tanese 
���� Starkweather et al��

��
��

Assume for a moment that one executes 
� separate genetic algorithms� each using a
population of 
�� strings without migration� In this case� 
� independent searches occur�
Each search will be somewhat di�erent since the initial populations will impose a certain
sampling bias� also� genetic drift will tend to drive these populations in di�erent directions�
Sampling error and genetic drift are particularly signi�cant factors in small populations and�
as previous noted� are even more pronounced in genetic algorithms such as Genitor and CHC
when compared to the canonical genetic algorithm�

By introducing migration� the Island Model is able to exploit di�erences in the various
subpopulations� this variation in fact represents a source of genetic diversity� Each subpop�
ulation is an island� and there is some designated way in which genetic material is moved
from one island to another� If a large number of strings migrate each generation� then global
mixing occurs and local di�erences between islands will be driven out� If migration is too
infrequent� it may not be enough to prevent each small subpopulation from prematurely
converging�

���� Cellular Genetic Algorithms

Assume we have ��
�� simple processors laid out on a 
�x
� ��dimensional grid� Processors
communicate only with their immediate neighbors �e�g� north� south� east and west� NSEW��
Processors on the edge of the grid wrap around to form a torus� How should one implement
a genetic algorithm on such an architecture�

��



An Island Model Genetic Algorithm A Cellular Genetic Algorithm

Figure �� An example of both an island model and a cellular genetic algorithm� The coloring
of the cells in the cellular genetic algorithm represents genetically similar material that forms
virtual islands isolated by distance� The arrows in the cellular model indicate that the grid
wraps around to form a torus�

One can obviously assign one string per processor or cell� But global random mating
would now seem inappropriate given the communication restrictions� Instead� it is much
more practical to have each string �i�e�� processor� seek a mate close to home� Each processor
can pick the best string in its local neighborhood to mate with� or alternatively� some form
of local probabilistic selection could be used� In either case� only one o�spring is produced�
and becomes the new resident at that processor� Several people have proposed this type
of computational model �Manderick and Spiessens� 
���� Collins and Je�erson� 
��
� Hillis�

���� Davidor� 
��
�� The common theme in cellular genetic algorithms is that selection
and mating are typically restricted to a local neighborhood�

There are no explicit islands in the model� but there is the potential for similar e�ects�
Assuming that mating is restricted to adjacent processors� if one neighborhood of strings is
�� or �
 moves away from another neighborhood of strings� these neighborhoods are just as
isolated as two subpopulations on separate islands� This kind of separation is referred to as
isolation by distance �Wright� 
���� M'uhlenbein� 
��
� Gorges�Schleuter� 
��
�� Of course�
neighbors that are only � or 
 moves away have a greater potential for interaction�

After the �rst random population is evaluated� the pattern of strings over the set of
processors should also be random� After a few generations� however� there emerge many
small local pockets of similar strings with similar �tness values� Local mating and selection
creates local evolutionary trends� again due to sampling e�ects in the initial population and
genetic drift� After several generations� competition between local groups will result in fewer
and larger neighborhoods�

��



�� Conclusions

One thing that is striking about genetic algorithms and the various parallel models is the
richness of this form of computation� What may seem like simple changes in the algorithm
often result in surprising kinds of emergent behavior� Recent theoretical advances have also
improved our understanding of genetic algorithms and have opened to the door to using
more advanced analytical methods�

Many other timely issues have not been covered in this tutorial� In particular� the issue
of deception has not been discussed� The notion of deception� in simplistic terms� deals with
con�icting hyperplane competitions that have the potential to either mislead the genetic
algorithm� or to simply confound the search because the con�icting hyperplane competitions
interfere with the search process� For an introduction to the notion of deception see Goldberg
�
���� and Whitley �
��
�� for a criticism of the work on deception see Grefenstette �
�����
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