
FLY: A Domain-Specific Language for Scientific
Computing on FaaS

Gennaro Cordasco1(B), Matteo D’Auria2, Alberto Negro2, Vittorio Scarano2,
and Carmine Spagnuolo2

1 Dipartimento di Psicologia, Università degli Studi della Campania, Caserta, Italy
gennaro.cordasco@unicampania.it

2 Dipartimento di Informatica, Università degli Studi di Salerno, Fisciano, Italy
{matdauria,alberto,vitsca,cspagnuolo}@unisa.it

Abstract. Cloud Computing is widely recognized as distributed computing
paradigm for the next generation of dynamically scalable applications. Recently
a novel service model, called Function-as-a-Service (FaaS), has been proposed,
that enables users to exploit the computational power of cloud infrastructures,
without the need to configure and manage complex computations systems. FaaS
paradigm represents an opportunity to easily develop and execute extreme-scale
applications as it allows fine-grain decomposition of the application with a much
more efficient scheduling on cloud provider infrastructure.

We introduce FLY, a domain-specific language for designing, deploying and
executing scientific computing applications by exploiting the FaaS service model
on different cloud infrastructures. In this paper, we present the design and the lan-
guage definition of FLY on several computing (local and FaaS) back-ends: Sym-
metric multiprocessing (SMP), Amazon AWS Lambda, Microsoft Azure Func-
tions, Google Cloud Functions, and IBM Bluemix/Apache OpenWhisk. We also
present the first FLY source-to-source compiler, publicly available on GitHub,
which supports SMP and AWS back-ends.

Keywords: Domain-Specific Languages · Scientific computing · Parallel
computing · Distributed computing · Serverless computing · Functions as a
Service (FaaS)

1 Introduction

Cloud computing [2] is widely recognized as distributed computing paradigm for the
next generation of dynamically scalable applications. Since the dawn of the practice
of the cloud, many service models are competing to become the leading model of
cloud infrastructures. Nowadays, Cloud computing is undergoing a service-model shift,
moving the computation on the Serverless computing model, superseding the popu-
lar service-models as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS)
and Software-as-a-Service (SaaS). Serverless computing model is a novel paradigm for
deployment of cloud applications, in which code snippets are executed over the cloud
infrastructure without having to manage or configure the machines running the code.

c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 531–544, 2020.
https://doi.org/10.1007/978-3-030-48340-1_41

532 G. Cordasco et al.

Serverless computing architecture is the natural evolution of microservices archi-
tecture [3], in which the developers do not have to mind about the configuration and
management of the servers executing the back-end of their applications. Cloud appli-
cations based on serverless computing are event-triggered: programmer-defined events
rule the independent execution of modular pieces of code on the cloud environment.
This novel service model, named Function-as-a-Service (FaaS), was first introduced
and made available to the world by hook.io in late 2014 and was shortly followed by
AWS Lambda, Google Cloud Functions, Microsoft Azure Functions and many others.

FaaS can be seen as a finegrained computing partitioning of a cloud applications,
which enables to scale according to the provider capacity. FaaS has been designed for
easily build and deploy scalable applications that are business-oriented such as Mobile
and Internet of Things (IoT) Back-end, Real-time File/Stream Processing, Web Appli-
cations as well as service oriented applications.

In this work we take a novel approach by exploiting FaaS cloud service-model to
develop scalable computing-intensive applications for scientific and data science. In
fact, since the very beginning of Cloud, it was clear how the paradigm represented an
opportunity to easily develop and execute extreme-scale applications maintaining their
costs extremely low compared to High Performance Computing solutions, as shown by
the experiments in [4]. On the other hand, although cloud providers offer solutions with
a high level of scalability, very often the migration of a scientific application on IaaS or
PaaS represents a humongous and complex task, which can conceal serious cost consid-
erations, thereby often preventing scientific application developers to fully exploit the
scalability and cost effectiveness of cloud computing in their own application domain.
This work aims at reconciling Cloud and High Performance Computing by providing
an efficient, effective and price-aware tool for the development of scalable scientific
computing application on several FaaS environments through the design and imple-
mentation of a domain-specific language (DSL) named FLY. FLY is efficient because it
enables to exploit the computing capabilities of different cloud providers at once, in a
single application, and, then, the most efficient solutions can be merged together. FLY

is effective because it consists of a user-friendly programming language that frees the
programmer from the management and configuration of several complex computation
systems. Finally, FLY is price-aware because the programmer becomes conscious of the
maximum computing costs, based on the prices provided by various cloud providers.
In this way, the programmer also has the possibility to choose the service that provides
the best value for money, based on the characteristics of the computation that is going
to perform.

1.1 The Motivations for a Parallel Language for FaaS

Cloud infrastructure provides several services in an accessible fashion through web
endpoints, and/or APIs. Designing and developing scientific applications typically does
not require general purposes services (for instance access to database or providing web
pages), but it requires ad-hoc coding that implements algorithms, which solve specific
problems.

Scientific computing applications are commonly developed using general-purposes
languages or parallel languages/frameworks such as C, Java, Python, Fortran, Julia,

FLY: A Domain-Specific Language for Scientific Computing on FaaS 533

Table 1. Cloud Computing infrastructures API and FaaS programming languages fragmentation.

Cloud
infrastructure

FaaS service API
languages

FaaS
languages

Pricing and limitations

Amazon
Web
Servicesb

AWS
Lambda
function

Java, .NET,
Node.js,
PHP, Python,
Ruby, Go,
C++, REST

JavaScript,
Java, Python,
Go, C#

1 M functions and 400.000
GB/s of execution time free
per month
The execution time of a single
function is limited at 300 s

Microsoft
Azureb

Azure
function

.NET, Java,
Python, Go,
Node.js,
REST

C#, F#,
JavaScript,
Java

1 M functions and 400.000
GB/s of execution time free
per month
The execution time of a single
function is limited at 300 s

Googleb Google
function

REST, RPC JavaScript 2 M functions, 1 M seconds
of execution and 5 GB of net-
work traffic free per montha

The execution time of a single
function is limited at 540 s

IBM
Bluemix/A-
pache
OpenWhiskb

Action REST JavaScript,
Python, Java,
PHP, Swift,
Docker and
native
binaries, Go

5 M of functions and 400.000
GB/s of execution time free
per monthb

The execution time of a single
function is limited at 600 s

Fissionb Fission
function

REST C#, Go,
JavaScript,
PHP, Python

Fn Projectb Fn function REST Java,
Go,Ruby,
Python, PHP,
JavaScript

Kubelessb Kubeless
function

REST Python,
JavaScript,
Ruby, PHP,
Go, .NET,
Ballerina

a1Amazon AWS Lambda pricing. 2Microsoft Azure Function pricing.
3Google Function pricing. 4IBM Bluemix pricing.
bAmazon AWS Lambda, aws.amazon.com/lambda.
Microsoft Azure Functions, azure.microsoft.com/services/functions.
Google Cloud Functions, cloud.google.com/functions.
IBM Bluemix, www.ibm.com/cloud-computing/bluemix.
Apache OpenWhisk, openwhisk.apache.org.
Fission, docs.fission.io.
Fn Project, fnproject.io.
The Kubernetes Native Serverless Framework, kubeless.io.

534 G. Cordasco et al.

Limbo, Chapel, MPI, Swift and many others (see Sect. 3 for more details). Moreover,
scientific computing problems are typically computing-intensive and requires the com-
putational power of a distributed system (clusters or HPC). Since 2017, Amazon Inc.
company provides, in their IaaS offer, machines with high number of virtual processors
and memory, which enables users to execute applications on a high performance clus-
ter “de facto”. According to the IaaS model, in such cases, the user is responsible for
deploying and managing of such virtual clusters.

Although many cloud computing companies are recently providing MapReduce [5]
programming paradigm as a cluster of machines running MapReduce compliant frame-
work such as Apache Hadoop (e.g., AWS’s Elastic Map Reduce), many computing-
intensive problems do not fit well the MapReduce paradigm.

FLY also addresses another issue about the nature and prices of the services offered
by Cloud computing providers. In fact, in some cases, it would be extremely convenient,
either in terms of efficiency or cost, to be able to develop cloud scientific applications
exploiting different services coming from different providers. Our result, then, enables a
scientific application designer to write computing-intensive applications that can scale-
up among different computing providers at the lowest costs, selecting the services that
best fit the requirements of the considered problem.

2 Preliminaries

This section presents and discusses the research and state-of-the-art for the cloud
computing service-models domain as well as a short introduction to domain specific
languages.

2.1 Cloud Computing Service-Models

Cloud computing enables companies to use computing resources as a service (like
electricity) rather than having to buy, set-up and maintain computing infrastructures
in house. Several cloud computing service-models [6] has been proposed during the
last two decades. Three models are mainly used by cloud providers:

• Software-as-a-Service (SaaS), when applications are hosted by a cloud providers
and made available on the web.

• Platform-as-a-Service (PaaS), which is a paradigm for delivering applications
frameworks on the Internet without downloading or installing it.

• Infrastructure-as-a-Service (IaaS), which can be seen as the outsourcing of com-
puting power required by the customers. This involves disk space, hardware, and
networking components.

At a first sight, Cloud service models look promising for the Scientific Computing
community, as they may take advantage of the adoption of cloud computing, in their
compute-intensive applications and workflows, in each of the service models described
above. It is possible, for example, to use IaaS for executing application on high perfor-
mance machine or huge clusters, or a cloud computing provider can offer either PaaS

FLY: A Domain-Specific Language for Scientific Computing on FaaS 535

or SaaS, dedicated domain specific services for scientific and data analysis purposes
(like machine-learning or data-mining services, MapReduce frameworks, etc.). But the
scenario does not come without effort and costs, as, for example, the developers still
need to manage (complex) virtual machines (IaaS), or configure the services (PaaS and
SaaS). Moreover, the scalability of these systems depends on the configuration adopted
and the overall performances and costs saving are strictly dependent on the fluency and
skills of the developers in the Cloud Computing realm.

Serverless computing service-model (or Function-as-a-Service, Faas) [7–9] answers
to the needs of new scalable price-effective cloud applications, by providing an easy
framework for deploying extremely scalable, functionally partitioned applications.
FaaS enables developers to run their back-end applications on complex computing sys-
tems, without a thorough knowledge of the management and configuration of such
systems. Indeed, using FaaS, the user is able to execute independent piece of code
(functions), written in different languages, over the cloud infrastructure, without taking
care about which is and what kind of configuration has the server running the code.
FaaS service-model architecture is event-triggered, which means that developers must
deploy the functions on the cloud infrastructure, and those functions are executed in
response to events generated on the cloud infrastructure (e.g., insert a new record in a
database, send a message on a queue, etc.). Table 1 shows some of the most popular
Cloud Computing infrastructures (open-source and private companies) that provide the
FaaS service-model. Our proposal is guided by the vision to adopt this service-model
in a different context, that is for computing-intensive applications.

2.2 Domain-Specific Languages

Domain-Specific Languages (DSLs) are designed to provide a notation tailored toward
an application domain that is based only on the concepts and features that are relevant
for the domain. DSLs enable solutions to be expressed at the same level of abstraction of
the problem domain and can be of significant help in shifting the development of busi-
ness information systems from software developers to a larger group of domain-experts
who, despite having less technical expertise, have deeper knowledge of the domain and,
therefore, if an easy-to-use, tailored tool is provided, can be much more effective. Fur-
thermore, DSLs are much easier to learn, given their limited scope. It must be said that
DSLs have specific design goals that contrast with those of general-purpose languages:
DSLs are much more expressive in their domain and should exhibit minimal redun-
dancy. Examples of DSL include SQL [10] (for relational database query), HTML [11]
(for website definition), R [13] (for statistics), OpenABL [12] (for simulation).

536 G. Cordasco et al.

Fig. 1. FLY compilation workflow.

3 Related Work

Parallel and distributed languages have been actively investigated for decades [15]. Here
we describe several languages and frameworks that are suitable for developing scalable
applications in the scientific computing (SC) research area.

General-Purpose Languages. Fortran is a programming language designed for
numeric computation and scientific computing. It is widely used in scientific fields (such
as numerical weather prediction, computational dynamics and physics). Programmers
are moving toward modern programming languages like Python [17] and Julia [18]

Parallel Languages. Limbo [19] is a programming language intended for applications
running distributed systems on small computers. Chapel [20] is a programming lan-
guage designed for productive parallel computing on large-scale systems. Its design
and implementation have been undertaken with portability in mind, enabling Chapel to
run on different environments. Cilk [21] is a general-purpose programming language
designed for multithreaded parallel computing. Cilk is a C/C++ extension that supports
nested data and task parallelism.

Frameworks Designed for Compute-Intensive Applications. Apache Hadoop [22] is
a framework that enables the distributed processing of large data sets across clusters of
computers using a simple programming model. Apache Spark [23] is a fast and general-
purpose cluster computing system.

Scripting Languages for Workflow. Swift [24] is a featured data-flow oriented coarse
grained scripting language, which is designed for scientists, engineers, and statisticians
that need to execute domain-specific application programs many times on large col-
lections of file-based data. Swift/T [25] is the high-performance computing version of
Swift languages, in which the Swift programs are translated in MPI based programs to
be executed on HPC systems. Swift and Swift/T provide set-up on cloud IaaS1. Open-
Mole [26] offers tools to run, explore, diagnose and optimize numerical models, taking
advantage of distributed computing environments.

1 http://swift-lang.org/tutorials/cloud/tutorial.html.

FLY: A Domain-Specific Language for Scientific Computing on FaaS 537

Listing 1.1: PI Montecarlo Estimation on Amazon AWS

1 va r aws = [type : ” aws ” , a c c e s s k e y : ” amazon aws acce s s key ” ,
s e c r e t k e y : ” amazon aws s e c r e t k ey ” , r e g i o n : ” us−e a s t −2”]

2 va r ch = [type=” channe l ”] on aws
3 func h i t () {
4 va r r = [type=” random”]
5 va r x = r . nex tDoub le ()
6 va r y = r . nex tDoub le ()
7 va r msg=0
8 i f ((x∗x) +(y∗y) < 1 . 0){ msg=1 }
9 ch !msg

10 }
11 func e s t i m a t i o n () {
12 va r sum = 0
13 va r c r t = 0
14 f o r i i n [0 : 1 0 000] {
15 sum += ch ? as In t eg e r
16 c r t += 1
17 }
18 p r i n t l n ” PI a pp r ox ima t i o n i s ”+ (sum∗4 . 0) / c r t
19 }
20 f l y h i t i n [0 : 1 0 000] on aws t h e n a l l e s t i m a t i o n

4 FLY Design

The goal of FLY is to provide a portable, scalable and easy-to-use programming envi-
ronment for scientific computing. FLY perceives a cloud computing infrastructure as a
parallel computing architecture on which it is possible to execute some parts of its exe-
cution flow in parallel. FLY enables the domain developers (i.e., domain experts with
limited knowledge about complex parallel and distributed systems) to design their appli-
cations exploiting data and task parallelism on any FaaS architecture. This is achieved
by a rich language that provides domain-specific constructs, that enable the developers
to easily interact, using an environment abstraction, with different FaaS back-ends.

FLY provides implicit support for parallel and distributed computing paradigms and
memory locality, enabling the users to manage and elaborate data on a cloud environ-
ment without the effort of knowing all the details behind cloud providers API. A FLY

program is executable either on a SMP or a cloud infrastructure (supporting FaaS) with-
out a deep knowledge of the underlying computing resources.

FLY is compiled in native code (Java code) and it is able to automatically exploit
the computing resources available that better fit its computation requirements. The
main innovative aspect of FLY is represented by the concept of FLY function. A FLY

function can be seen as an independent block of code, that can be executed concur-
rently. FLY functions can be executed in sequential mode, in parallel on SMP or on a
FaaS back-end. The language provides programming constructs for functions defini-
tion, execution, synchronization and communication. Communication among different
environments/back-ends is obtained through some virtual communication path named
channels. Along these lines FLY has been designed as an enhanced scripting language
and is composed by a sequence of standard instructions integrated with a number of
FLY functions invocation, which interact via channels.

Figure 1 depicts the FLY compilation workflow. On the left side, the FLY program is
given in input to the compiler (written using XText). The intermediate AST representa-
tion is translated in a Java native program. Each FLY function is translated into different

538 G. Cordasco et al.

executable codes (one for each back-end). Therefore FLY provides compiled functions
code that can be executed on each cloud infrastructure back-end (see Fig. 1).

Fig. 2. FLY execution workflow.

Figure 2 shows a general execu-
tion flow of a FLY program along
the execution time. First of all, the
program initializes all the back-
ends required by the FLY code, and
deploys the generated code on the
corresponding back-end. We notice
that the FLY functions are already
compiled when the main FLY pro-
gram is executed, thereby avoid-
ing run-time compilation overheads.
After these initialization steps, the
main program is executed follow-
ing the FLY code instructions. Each
time the fly keyword is used, the
program generates events on the
corresponding SMP and/or FaaS
back-end, in order to execute the
FLY functions. FLY supports syn-
chronous and asynchronous execu-
tion models.

Before presenting the FLY lan-
guage design, Listing 1.1 shows a
simple example of a FLY program,
which computes a PI estimation
through the Montecarlo Method on

an Amazon AWS Lambda back-end. Briefly, the PI Monte Carlo estimation algorithm
generates a set of random points on a two dimensional Cartesian systems, and counts
the number of points that are inside the positive quadrant of a circle of diameter 1.0
centered in the origin. Then, it computes the estimation of PI as S∗4.0

N , where S is the
number of points inside the positive quadrant of the circle and N is the total number
of generated points. First of all, FLY PI code defines, at line 1, a new Amazon AWS
FaaS back-end. Line 2 declares a new channel on the environment aws that enables the
main program to communicate with the FLY function hit, defined at line 3. The hit
function generates a random point and evaluates whether it belongs to the circle. This
information is sent on the channel ch. Another function estimation reads the out-
puts of the function hit and writes on the standard output the estimation of PI. Line 20
launches 10000 hit functions synchronously on the aws back-end. When all functions
terminate, the function estimation is performed on the SMP back-end. It is worth
to notice that FLY functions cannot use variables declared outside the function scope,
excepts for variables of type channel (see Sect. 5).

FLY: A Domain-Specific Language for Scientific Computing on FaaS 539

5 FLY Language Definition

The FLY syntax and concepts are inspired by different languages such as Java,
JavaScript, Python, and R. This ensures familiarity with most powerful and famous
general purposes/data science languages. FLY is statically, strongly typed and uses type
inference to determine the initial type of all your variables (using the keyword var) and
constants (using the keyword const). Moreover, FLY provides several domain specific
constructs for parallel/distributed task/data based parallelism and supports inter-process
(and inter-FLY-functions) communications using channels according to communicating
sequential processes (CSP) definition [16].

5.1 Data Models and Types

FLY provides two sets of types named basic and domain types. Basic types, inherited
by Java, comprises boolean, integer, real (double point precision floats) and string.
Moreover, FLY supports one/bi/three-dimensional array definition for basic types. In
addition to basic types, FLY provides several domain types that enable the users to
interact and communicate with the computing back-ends.

Object Domain Type. The main domain type is the object type. A FLY object is a het-
erogeneous collection of basic and/or domain types elements. Essentially a FLY object
is a mixture between an array and map data structure, which stores data in key/value
pair. The value of an element can be accessed in two different ways: by position (like
arrays) or by key (like maps). When a new value is assigned to a given key/position
a new element is created, otherwise the new value replaces the previous one. More-
over, all FLY domain specific type are an instance of the object type, which means are
build in similar fashion, specifying the object type using the parameter keyword type =
“object type”.

Environment Domain Type. The Environment type represents an abstraction of a
execution environment. It provides the ability to interact with a cloud provider or a
SMP system. Different environments are treated in the same way by FLY, leaving the
details relating to the specific use of each execution environment to the FLY compiler.

Environments are declared as an object using several parameters that characterize
a back-end. In this preliminary version of the FLY compiler, the SMP (using the type
smp) and AWS back-end (using the type aws) are supported (see Sect. 6).

va r name = [type=” (smp , aws , . . .) ” , n t h r e a d s = In teger , acce s skey=Str ing ,
s e c r e tk ey=Str ing , l im i t =Floa t]

The first parameter specifies the desired back-end. The simplest back-end is smp, and
enables the user to exploit the local SMP architecture. The second parameter (threads)
indicates the maximum number of concurrent tasks allowed on the back-end. The
remaining parameters are used to manage the authentication on the back-end. Even-
tually, the parameter limit enables the user to set an usage cost limit according to the
used back-end.

File Domain Type. File object is the abstraction of file in FLY. The language supports
four file formats: csv, json, img, and txt, defined by the parameter type. A new file object

540 G. Cordasco et al.

is defined using also additional parameters: path (the file system path) or a reference to
the file, and by the separator sep, that is an optional parameter defined for CSV files.

The language provides two methods to access files, which depend on where the file
is stored: local or remote.

va r name = [type=” (csv , j son , img , t x t) ” , path=Str ing , sep=Str ing] on env (o p t i o n a l)

FLY has a specific focus on csv files managing them as a Dataframe (similar to R
language dataframes). The memory is seen as a matrix structure, allowing the user to
access to rows and columns, while it provides dedicated operations for querying, filter-
ing, random access, etc. Dataframe operations are described in details in the language
documentation.

Communication Statement. Channel type is a domain type that enables the synchro-
nization and communication between FLY functions and/or the main program, defined
by the type = “channel”. Channels follow the Communicating Sequential Processes
(CSP) definition [16]. A new channel is defined on an environment, and can be used
for the communication between functions executing on the same back-end or from the
main program to a back-end and viceversa. Channels are blocking message queues, that
is, when the main program or a function tries to receive a message from a channel, the
execution is blocked until a new message arrives on the channel. Messages are sent on a
channel using the character ‘!’ (e.g., the instruction ch!VAL sends a message V AL on
the channel ch), while the character ‘?’ is used to receive messages, (e.g., the instruc-
tion x=ch? reads a message from the channel ch and assigns the obtained value to the
variable x). Channels use network infrastructures to communicate with the cloud envi-
ronment and for this reason a serialization mechanism is required for sending/receiving
messages. FLY defines the serialization for objects, files, images and basic types. It is
not allowed to send messages containing environments, channels, and random objects.

5.2 Control Structures

FLY conditional and iterative controls structures are standard and follows the same state-
ments of languages like Java. Two kinds of for loops can be used in FLY, the former
uses a range definition, and enables the program to loop in a range of integer values,
defined using square parenthesis ([x:y]). The latter, enables the program to iterate over
a FLY object or a file.

5.3 Execution Control Structures

Functions. FLY functions are quite different from other scripting languages and follow
a functional programming inspired definition. A FLY function represents a task or inde-
pendent job of the main program and it is defined as a code block that can be executed
concurrently. FLY functions are declared using the keyword func. Each FLY function
can have a set of input parameters and may return a value using the word return. FLY

functions have a private scoping, that is only function parameters and local variable
are visible in the body of the function. The input parameters are passed by copy, and
they are considered as immutable. However, functions can avoid this limitations using

FLY: A Domain-Specific Language for Scientific Computing on FaaS 541

channels or constants. A channel declared in the main program or in a function running
on the same environment can be directly used by a function, the same behavior is also
defined for the constants.

Notice that, the FLY language does not ensure that operations are admitted: if a
function is executing on a back-end B, the function can use only channels and objects
available on the back-end B. FLY functions can be executed, like for standard languages,
using their ID and parameters (in this case functions are executed sequentially). In order
to execute functions concurrently, FLY provides the fly statement that will be described
in the following. The fly statement is not admitted in the body of a function (i.e.,
recursion is not allowed).

Parallel/Distributed Statement. The definition of FLY functions is the consequence
of the explicit parallel execution model of FLY. The language provides the keyword
fly that enables the user to execute concurrently a set of functions (the number of
concurrent functions will depend on the back-end used and the user needs). The fly

statement is similar to the for statement but the fly statement allows to specify the
back-end environment (using the keyword on) and, possibly, callback functions.

f l y ID i n [x : y] | Object | F i l e on Env t h en ID t h e n a l l ID

The fly statement supports two kinds of function callbacks, declared using the
keywords then and thenall. The then callback is executed after each FLY function
execution, instead the thenall callback is executed after all FLY function executions.
Then and thenall functions have to take only one input parameter that, for then cor-
responds to the return value of a function execution, while for thenall is a FLY object
containing all the return values obtained by all the function executions.

FLY explores synchronous and asynchronous execution models. The previous con-
struct defines the synchronous mode, in which the main program waits all functions ter-
mination. It is possible to execute functions asynchronously using the keyword async

before the fly construct.

Asynchronous Execution. The async statement returns a special FLY object, named
async-object, that enables the user to control and interact with the asynchronous execu-
tion. The async FLY constructor invocation immediately returns the control to the main
program and the execution can continue. The user can control the status of the asyn-
chronous functions invoking the method status() on the async-object and can wait
the termination of all functions using the method wait().

Types Casting. FLY uses a dynamic type checking, that is variable types are automat-
ically inferred at run time during the first assignment. Moreover, FLY typing is strong,
the type of a variable cannot change during the execution time. FLY provides support for
explicit types casting as in Java and C#. Types casting is admitted on basic and domain
types, but it is forbidden on environments and channels.

Native Code. FLY is also able to include external libraries (using the keyword require,
which enables to include and install, in the selected environment, an additional library)
and supports the execution of native code (using the keyword native). For instance, the
FLY functions running on the aws back-end are translated in Javascript, which means
that it is possible to include in these functions all JS libraries.

542 G. Cordasco et al.

6 Compiler Implementation

We present, in this Section, the preliminary version of our source-to-source compiler
for FLY language. An implementation of the language grammar and code generators for
the SMP and AWS FaaS back-ends have been developed.

Cloud computing infrastructures expose their FaaS service model through APIs in
several languages, as show in Table 1. We deployed our compiler in order to generate a
Java program, which is able to support all back-ends. We decided to design our language
compiler using Xtext [14], which enables the user to create JVM based DSL. The FLY

code is translated in a pure Java program that exploits FaaS APIs in order to use FaaS
services. Xtext leverages the powerful ANTLR parser which implements an LL parser.

We designed an LL grammar for FLY language that provides the complete language
definition, presented in the Sect. 5. Xtext has been also used to develop a code generator
that, given the intermediate AST program representation (the output of the first compi-
lation phase), generates a FLY Java program. The code generation phase is the core of
our compiler, it generates different codes according to the back-end where the FLY code
has to be executed. The code generation phase is designed to be specialized according
to the considered back-end:
1) SMP back-end. A Java Thread Pool is used to implement the back-end for the SMP
architecture. The FLY main program is executed as Java code on a JVM, which executes
also the SMP back-end. In details, all FLY types are mapped on a particular Java type
and the FLY functionality are provided exploiting the Java language.
2) FaaS back-ends. The back-ends for Faas architectures have been developed using the
Java API of each cloud providers. In order to support different back-ends, our FLY com-
piler translates each FLY function in JavaScript (JS) using the specific JS cloud provider
API to realize FLY operations on channels and remote files. For each back-end and each
FLY function the compiler generates a binary package containing: the JS code and the
used JS libraries. The generated package is used to deploy the function code on a cloud
provider. The alpha release of the FLY compiler as well as the compiler guide is avail-
able for download on the GitHub github.com/spagnuolocarmine/FLY-language releases
page. The FLY compiler produces: a Java Maven project including all FLY dependen-
cies, the FLY main program (a Java class with the same name of the FLY source code),
and the FLY functions code.

7 Conclusion

This paper introduces FLY, a domain specific language for scientific computing on FaaS
cloud computing service model. The contributions of this paper are: (i) the design
of FLY, a novel domain-specific scripting language for computing-intensive scientific
applications; (ii) the language design and specification for SMP and four FaaS cloud
computing architectures, and (iii) the FLY source-to-source compiler. Future works
and studies are already planned to improve FLY language definition including: library
and namespaces definitions, compiler optimizations (according to the FaaS execution
model), derived data types (as Java class) and data visualizations. The actual version
of the FLY compiler will be extended in order to support the improvements on the lan-
guage definition as well as other cloud providers. We plan to extend the compiler in

FLY: A Domain-Specific Language for Scientific Computing on FaaS 543

order to generate function code in other FaaS languages like Python. Furthermore, FLY

will provide specific libraries of algorithms (optimized for FaaS environments), such
as machine learning, data mining, and discrete-event simulation. In particular we will
focus on graphs algorithms and mining providing support for big networks [1].

References

1. Antelmi, A., Cordasco, G., Spagnuolo, C., Vicidomini, L.: On evaluating graph partitioning
algorithms for distributed agent based models on networks. In: Hunold, S., et al. (eds.) Euro-
Par 2015. LNCS, vol. 9523, pp. 367–378. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-27308-2 30

2. Shawish, A., Salama, M.: Cloud computing: paradigms and technologies. In: Xhafa, F.,
Bessis, N. (eds.) Inter-Cooperative Collective Intelligence: Techniques and Applications.
Studies in Computational Intelligence, vol. 495, pp. 39–67. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-35016-0 2

3. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice Architecture: Align-
ing Principles, Practices, and Culture. O’Reilly Media Inc., Sebastopol (2016)

4. Cordasco, G., Scarano, V., Spagnuolo, C.: Distributed MASON: a scalable distributed multi-
agent simulation environment. Simul. Model. Pract. Theory 89, 15–34 (2018)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51, 107–113 (2008)

6. Hwang, K., Dongarra, J., Fox, G.C.: Distributed and Cloud Computing from Parallel Pro-
cessing to the Internet of Things (2011)

7. Baldini, I., et al.: Serverless computing: current trends and open problems. In: Chaudhary, S.,
Somani, G., Buyya, R. (eds.) Research Advances in Cloud Computing, pp. 1–20. Springer,
Singapore (2017). https://doi.org/10.1007/978-981-10-5026-8 1

8. McGrath, G., Brenner, P.R.: Serverless computing: design, implementation, and perfor-
mance. In: ICDCSW 2017, pp. 405–410 (2017)

9. Stigler, M.: Beginning Serverless Computing: Developing with Amazon Web Services,
Microsoft Azure, and Google Cloud. Apress (2017)

10. Groff, J., Weinberg, P.: SQL The Complete Reference (2010)
11. Graham, I.S.: The HTML SourceBook. Wiley, New York (1995)
12. Cosenza, B., et al.: OpenABL: a domain-specific language for parallel and distributed agent-

based simulations. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018.
LNCS, vol. 11014, pp. 505–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96983-1 36

13. R Development Core Team, R: A Language and Environment for Statistical Computing
(2008). www.R-project.org

14. Eclipse Project, Xtext, Language Engineering For Everyone! (2018). www.eclipse.org/Xtext
15. Thoman, P., et al.: A taxonomy of task-based parallel programming technologies for high-

performance computing. J. Supercomput. 74, 1422–1434 (2018)
16. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, London (1997)
17. Rossum, G.: Python reference manual. Technical report (1995)
18. Bezanzon, J., Karpinski, S., Shah, V., Edelman, A.: Julia: a fast dynamic language for tech-

nical computing. In: Lang.NEXT (2012)
19. Ritchie, D.M.: The limbo programming language. Technical report (2018)
20. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel language.

Int. J. High Perform. Comput. Appl. 21, 291–312 (2007)

544 G. Cordasco et al.

21. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
an efficient multithreaded runtime system. SIGPLAN Not. 30, 207–216 (1995)

22. White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc., Sebastopol (2009)
23. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM

59, 56–65 (2016)
24. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift: a language

for distributed parallel scripting. Parallel Comput. 37, 633–652 (2011)
25. Wozniak, J., Armstrong, T., Wilde, M., Katz, D.S., Lusk, E., Foster, I.: Swift/T: large-

scale application composition via distributed-memory dataflow processing. In: Proceeding
of IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing (2013)

26. Reuillon, R., Leclaire, M., Rey-Coyrehourcq, S.: Openmole, a workflow engine specifically
tailored for the distributed exploration of simulation models. Future Gener. Comput. Syst.
28, 1981–1990 (2013)

