
Computer Supported Cooperative Work9: 53–74, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

53

Design of Extensible Component-Based Groupware

JAKOB HUMMES and BERNARD MERIALDO
Eurecom, 06904 Sophia Antipolis, France (E-mail: hummes@eurecom.fr and
merialdo@eurecom.fr)

(Received 5 February 1999)

Abstract. Tailoring is identified as a key requirement for CSCW applications. One major tailoring
mechanism is the extension of an application at run-time to change its behavior.

This article shows how synchronous CSCW component-based applications can be designed to be
extensible at run-time. We propose to split the act of tailoring into two steps: the design-time custom-
ization of new components in visual builder tools and their insertion into the running application.
Thus the customization tool is not required to be part of the application.

This article presents a new design pattern for extensibility and gives several examples based on
that pattern. With the help of the pattern extensible application frameworks can be systematically
created from a non-extensible application design. The different possibilities to place insertion points
into the application design are discussed with respect to flexibility and ease of deployment. Finally,
we present the advantages and limitations of this approach.

Key words: customization, design pattern, extensibility, Java Beans, tailoring

1. Introduction

Human beings interact in different situations and their cooperative actions depend
on the context. Rather than following a predefined schedule of events, people tend
to act spontaneously in creative phases. In general, it is not foreseeable how people
work together; therefore, it is not always possible to define in advance which
artifacts are adequate to support their cooperative process. A CSCW system that
reflects these observations must allow the creation and insertion of new cooperative
modules and artifacts.

Inserting new functionality into a running application is an act of tailoring.
Tailoring is recognized in the CSCW literature as the key requirement for a system
to adapt to different cooperative contexts (Trigg and Bødker, 1994; Malone et al.,
1995). For Bentley and Dourish (1995), “support for customization is support for
innovation”.

This article focuses on one important subset of tailoring: the ability to insert
new functionality into an application and thus to change the behavior of the system.
New functionality can be discovered by an extensible application at initialization
time. It is harder to design applications that can be extended at run-time. Even
harder is the design of extensibility at run-time in distributed interactive applica-

54 JAKOB HUMMES AND BERNARD MERIALDO

tions, such as synchronous groupware. This article presents a general design pattern
to solve the latter problem.

Component-based frameworks are currently being investigated as a means to
gain reusability on all layers and to adapt to change. Until recently, software
engineering has focused on the development of code, which is reusable and exten-
sible during the design phase. That focus has evolved towards the development of
finished modules of code which can be reused and customized by the end-user.
System modifications and extensions which were once strictly in the domain of
the programmer are now being shifted into the domain of the end-user. This article
applies the findings of framework research to the construction of tailorable CSCW
systems, which allow the insertion of extensions on demand by the end-user. The
code of the extensions is distributed on demand to every participant of the group;
thus the extensions do not need to be pre-installed. Our approach provides the
possibility to extend an application without terminating an ongoing cooperation.

The goal of this article is to demonstrate how component technology supports
an efficient way of constructing extensible CSCW applications. Component models
allow one to reason on different levels of abstraction depending on the composition
level (Stiemerling and Cremers, 1998). We focus on the component model Java
Beans and its supporting integrated development tools (IDE), which let the user
create and customize components visually. The user may assemble components
into larger composite components using the visual representation provided by an
IDE rather than writing lines of code. Programmers can design the components
and accompany them with special customizers to facilitate customization at design-
time. In the extreme case, a new component can be assembled by only using drag
and drop operations, so that even end-users can accomplish the task of creating
new components.

By using only the standard and widely used Java and Java Beans technolo-
gies for their realization, our concepts become applicable and usable by other
groupware developers.

If not otherwise stated, we will refer throughout the article totailoring as
the activities by the end-user to modify and extend the application at run-time.
In contrast we use the termdesign-time customizationto denote modifications at
design-time.

The tailoring support for extending a running program is split into two different
support-systems, the customization and the insertion support. Figure 1 illustrates
our approach. In the first step, an end-user uses an off-the-shelf visual builder tool
to customize a component at design-time. This component is then, in a second step,
inserted into the running distributed CSCW application. Decoupling the customiz-
ation tool for the components from the actual CSCW application has the following
advantages for the developer:

− The product can be earlier delivered, because the tailoring functionality is not
built into the product.

DESIGN OF EXTENSIBLE COMPONENT-BASED GROUPWARE 55

S ystem Border

Visual Builder Tool: IDE

Running CSCW application Running CSCW application

A

B

C

D

E

D

E

D

E

Figure 1. The two-step approach to tailor a CSCW application.

− The developer can save resources, because a proprietary tailoring tool needs
not to be developed.

− General off-the-shelf IDEs are continuously improved by third party vendors.

The end-users profit from the decoupling as well. They can use their favorite
builder tool for that component model and do not need to accustom to a new tool
for every application. We will show that standard visual programming tools can be
used efficiently by end-users to perform tailoring of CSCW applications.

2. Relevant previous work

The work described in this article is based and influenced by the research in
different domains. Relevant for this work are the publications about tailorability
in general and its significance for CSCW; about framework design, component
technology and design pattern evolving from object-oriented software engineering;
but also about new organizational forms by the business science and coordina-
tion theory under the umbrella of “virtual organizations”. All approaches have in
common that they focus on evolving systems; they differ from their points of view.
This paper tries to synthesize some of the findings.

2.1. TAILORING

Tailoring is defined as the activity of modifying the appearance and behavior of
an application at run-time by the end-user (Trigg and Bødker, 1994; Malone et

56 JAKOB HUMMES AND BERNARD MERIALDO

al., 1995; Mørch, 1997). Tailoring support is normally built into the application,
so that the user does not need a separate tool. In contrast to this definition, this
article proposes a two-step approach, which uses customization at design-time to
gain tailorability at run-time.

Before explaining our approach in greater detail, we give a brief overview of
tailoring. Mørch (1997) distinguishes three levels of tailoring. The levels are clas-
sified by the design distance which is experienced by the end-user during tailoring.
The first level, customization at run-time, allows to modify the appearance of
presentation objects and to change their attributes. The second level allows the
integration of new components or commands by composition of existing function-
ality within the application. The third level allows the extension of an application
by adding new code. Generally speaking, with an increasing level the tailoring
possibilities for a user increase, but also become more complex. To overcome
the design distance, Mørch (1995) proposes to use so called “application units”.
Application units consist of three parts: a presentation-object, which is the user-
interface, a rationale that provides meta-information about the intended use, and
the actual implementation.

Tailoring beyond the first level involves end-user programming. End-user
programming facilities can be offered by the application framework itself, such
as in the “radically tailorable” tool for CSCW, Oval (Malone et al., 1995). The
end-user can write small scripts, which are interpreted by the application, as in
applications of the Microsoft Office suite (Solomon, 1995). But end-user program-
ming can also be separated from the application and done in a general purpose
language. Afterwards, the written functionality is inserted into the application at
anticipated hooks. Since programming in a general purpose language is regarded
as being hard for an end-user, she or he must be supported by high level tools for
this task. Visual builder tools like IBM’s Visual Age for Java offer an even higher
abstraction than scripting languages and are thus usable by end-users (Weinreich,
1997). We will follow this approach.

On the level of programming languages, the possibility to reflect and introspect
code is viewed as enabling technology to write tailorable software; reflection in
component models is used to support self-representation (Stiemerling and Cremers,
1998). Reflection can also be viewed as a design pattern (Buschmann et al., 1996).
Dourish proposes a reflective model for collaborative systems (Dourish, 1995) and
implemented the toolkit Prospero for CSCW (Dourish, 1996) using this model to
express meta-information and to allow the change of the behavior of the under-
lying toolkit. Component models, such as JavaBeans and DCOM, offer reflection
capabilities and meta-data on components (Krieger and Adler, 1998); our approach
uses these capabilities to automate interface negotiation and to offer the end-user
an easy-to-handle user-interface to tailor components within a visual builder tool.

DESIGN OF EXTENSIBLE COMPONENT-BASED GROUPWARE 57

2.2. FRAMEWORKS: TOWARDS EXTENSIBLE APPLICATIONS

A framework is a skeleton of cooperating classes that forms a reusable implemen-
tation. An application framework defines the overall architecture of the applications
that are created by adapting the framework. Framework-based applications are
adapted by extending the framework at explicit hooks also known as “hot spots”
(Pree, 1994).

Frameworks are currently successfully employed for general purpose soft-
ware units, such as graphical user interfaces, system infrastructure, and middle-
ware integration frameworks; also application domain specific frameworks are
emerging.

Frameworks are distinguished into white-box and black-box frameworks (Fayad
and Schmidt, 1997). Object-oriented white-box frameworks use inheritance to
offer the developer extension facilities. To insert extensions into white-box frame-
works the developer must understand the class hierarchy and derive new classes
which have to be relinked with the framework. Black-box frameworks use object
composition and delegation instead. Black-box frameworks anticipate extensions
by defining interfaces and providing hooks to insert new objects.

Applications that can be extended at run-time need hooks like black-box
frameworks. Unfortunately, designing frameworks – and especially black-box
frameworks – is substantially harder than designing an application. However,
the hot spots for a framework can be designed and implemented stepwise by
a sequence of generalization transformations (Schmid, 1997). Since applications
using a framework must conform to the framework’s design and model of collabo-
ration, the framework encourages developers to follow specific design patterns
(Johnson, 1997). In the other direction, developers can use design patterns to
generalize an object-oriented application into a framework (Schmid, 1995).

2.3. COMPONENT TECHNOLOGY

In the field of software engineering, component based software development is
seen as a major factor to facilitate reuse. Components can be purchased from third
party vendors, customized and assembled within a component model. Examples
for major component models are Microsoft’s Distributed Component Object Model
(DCOM) and SUN’s component model for Java JavaBeans (JavaSoft, 1996). The
component technology is predicted to acquire a significantly increasing impor-
tance (Kiely, 1998). Furthermore distributed component platforms are emerging,
which allow interaction between components across system boundaries (Krieger
and Adler, 1998).

A component is an independent “unit of software that encapsulates its design
and implementation and offers interfaces to the outside, by which it may be
composed with other components to form a larger whole” (D’Souza and Wills,
1998). Frameworks provide a reusable context for components (Johnson, 1997).

58 JAKOB HUMMES AND BERNARD MERIALDO

Components become most powerful within black-box frameworks, where they can
be used to extend the hot spots.

2.3.1. JavaBeans

The examples in this article are implemented using JavaBeans, the component
standard for Java.

The specification for JavaBeans outlines that “a Java Bean is a reusable software
component that can be manipulated visually in a builder tool” (JavaSoft, 1996).
Beans are self-descriptive Java classes that follow design patterns that let builder
tools or applications introspect a bean. Properties reflect the accessible state of a
bean. The Java Beans component model uses an event mechanism to interconnect
the beans. A bean sends an event to all beans that have registered their interest
in that event. The standard distinguishes two extraordinary states in the life-cycle
of a bean: A bean can be manipulated in an IDE at design-time or behave like an
ordinary object during run-time.

Properties and events can be manipulated within visual builder tools. The Java-
Beans standard offers additional associated classes for each bean, which contain
meta-information about the bean including special customizers and property
editors to support a more intuitive interaction with the developer.

The component-based approach together with visual integrated development
environments (IDEs) directly support our goal to be able to customize an existing
application at design-time and to be able to build new similar applications by
reusing the components. Beans with associated customizers allow even non-
programmers to customize applications in an intuitive way. The easy grasp is
achieved by the use of graphical and form-based editors within the IDEs.

2.4. DESIGN PATTERNS

Design patterns help one to reason about recurring design problems. Object-
oriented design patterns describe “communicating objects and classes that are
customized to solve a general design problem in a particular context” (Gamma
et al., 1994). Patterns abstract from the used programming language and provide
a basis for reusable design building blocks: “Design patterns are the micro-
architectural elements of frameworks” (Johnson, 1997).

Design patterns are surprisingly useful to detect the hot-spots in an applica-
tion design and to transform it into a domain-specific framework design (Schmid,
1995). Actually, the idea of hot spots was first introduced as a meta-pattern for
framework design (Pree, 1994). In the domain of CSCW and user-interface design
some patterns are well-known, such as the distributed versions of the Model-
View-Controller and Presentation-Abstraction-Control patterns (Buschmann et al.,
1996). Syri (1997) describes the use of the Mediator pattern to design tailorable
cooperation support in CSCW systems.

DESIGN OF EXTENSIBLE COMPONENT-BASED GROUPWARE 59

To design CSCW applications that are tailorable by extension, the hot spots
must be discovered in the design phase and then implemented. To ease the imple-
mentation we will introduce a design pattern which can be used to insert those
hooks into the application. The pattern focuses on the ability to insert new code at
run-time that conforms to an interface. By applying this pattern, one thus designs
a black-box framework for a specific CSCW problem.

2.5. VIRTUAL ORGANIZATIONS

This work is also influenced by recent publications about virtual organization
(Mowshowitz, 1997; Turoff, 1997). The idea of virtual organization stems from
virtual constructs, such as virtual memory and circuit routing, and generalizes
their concepts toward an integrating theory. One common concept in the virtual
constructs is that the mapping between an abstract requirement and a possible
concrete satisfier is dynamic. The mapping has to adapt as well to evolving
requirements as to changing satisfiers.

The ability of virtual organized systems to dynamically adapt to environmental
changes led us to think about how the dynamic exchange of software components
could enhance CSCW systems.

In this context, this paper provides a technical basis to insert new satisfiers
into a running groupware application when a new requirement arises. Changes to
requirements for CSCW applications can be a result of evolving cooperative work
patterns, for example when users become more familiar with a CSCW product or
the context and goal of a work group changes (Mark et al., 1997).

3. Enabling technologies for extending CSCW applications

This section introduces a design pattern, which is used to insert hot spots in the
design of applications. Since CSCW applications are inherently distributed, the
pattern is accompanied with components that allow the distribution of arbitrary
events to a group. By using the event mechanism and encapsulating code within
an event, we place an event receiver in the pattern to allow the simultaneous exten-
sion of synchronous CSCW applications at run-time. Finally, we investigate the
applicability of inserting code at run-time.

3.1. DESIGN PATTERN FOR EXTENSIBILITY

In a component model, applications are developed by interconnecting and custom-
izing components. The components themselves are composed of other, smaller
components. The design pattern for extensibility, which will be introduced here,
can be encapsulated into one component.

The Extensibility pattern1 is intended to be used to provide a default behavior,
which can be changed at run-time. To change the behavior a new class can be

60 JAKOB HUMMES AND BERNARD MERIALDO

Figure 2. Structure of the Extensibility pattern.

inserted at a hook, which can either add new functionality or replace an existing
class. The application sees only the specified behavior of aProxy class.

The structural representation of a pattern is given by the relationship between
the used classes. Figure 2 shows the structure of the Extensibility pattern in the
UML notation.2 This pattern consists of aProxy, which extends the interface of a
Subjectthat may be inserted at run-time.3 Inside theProxy exists aCreator, which
is responsible to create a new object of an arbitrary classReal Subjectconforming
with the interfaceSubject. Actually this pattern is a combination of the Proxy and
the Factory Method patterns from Gamma et al. (1994).

Figure 3 shows the interaction between the objects. At initialization time, the
Creator object passes a reference to a defaultReal Subject to the Proxy. Any
event that theProxy receives is delegated to the defaultReal Subject. When the
Creator receives an event (how that happens will be discussed soon) to create a
new Real Subject it instantiates the respective class and sets the reference in the
Proxy to the newly created object. TheProxy now forwards all subsequent events
to this object, unless theCreator changes the reference to aReal Subjectagain.

A slight variation of the pattern allows to add instances of new classes instead
of replacing the old objects. This can be easily accomplished by letting theProxy
store a set of allReal Subjects. All incoming events are then forwarded to all
instantiatedReal Subjects. This variation is useful if new functionality is added,
which is independent in the application logic from the already existing objects.

3.2. REMOTE EVENTS

In an event based component model, events are the means to communicate
state changes between components. The event mechanism follows the publisher-
subscriber pattern (Buschmann et al., 1996). The Java Beans component model

DESIGN OF EXTENSIBLE COMPONENT-BASED GROUPWARE 61

Proxy

Default Subjec t

C rea tor

in it in it

instantiate defau lt Subject

handleEvent
handleEvent

New Subject
instantiate new Subject

handleEvent
handleEvent

c reate
new Sub ject

Figure 3. Interaction diagram for the Extensibility pattern.

uses such an event mechanism. We will concentrate here on Java Beans, because
it is the component model we have chosen for our implementation. The design
of group communication components does not rely on this particular component
model, since event mechanisms are a common property of component models.

Since the Java Beans component model defines only the interaction between
beans in the same virtual machine, we developed group communication beans,
which act as access points for the distribution of events over process barriers
(Figure 4). The group communication beans follow the publisher-subscriber pattern
for a distributed platform. The group communication beans expose the event
model to the developer for remote event communication. Two types of beans are
necessary: TheGroupSenderforwards events to allGroupReceivers, which are
configured with the same group name. The group name is a property of the beans
and can be easily set within visual builder tools for beans, and the events can be
visually connected to and from these beans. Both beans can be specialized for
any event by simple object-oriented subclassing and implementing the register and
handler methods for that event type. Thus the group communication beans form a
white-box framework for distributed event communication. Although the definition
of new events is considered as a programming activity, which goes beyond the
usual capabilities of an end-user, the implementation is automated within most
IDEs, thus nearly no source coding is required by the developer.

62 JAKOB HUMMES AND BERNARD MERIALDO

GS

group
communication

GR

GR

GR
group name

group name

event

event

event

eventcomponents

backbone

Figure 4. Group communication beans: TheGroupSender(GS) distributes an event to all
subscribedGroupReceivers(GR).

New Class Event
insert
new class

choose
new class GS GR

New Class Event

Chooser Loader

Figure 5. Distribution of aNewClassevent.

3.3. DISTRIBUTING AND INSERTING COMPONENTS

Readers who ask themselves how theCreator in the Extensibility pattern is
triggered, will get their answers here. TheCreator encapsulates aGroupReceiver
that subscribes to a group on which events may arrive that carry the classes to be
instantiated. Since Java provides a platform-independent byte-code, we can directly
associate the classes with the events. In other implementations, objects would have
to be called remotely (by using CORBA for instance). We decided to actually
distribute code, since it is a more general solution than calling remote objects.
For example, a remote object would have difficulties to access system dependent
resources to show a new graphical user interface.

The distribution of a new component is handled by our design as the distri-
bution of aNewClassevent by the beans for group communication (Figure 5).
The bean, which acts as aChooser, selects the class, which should be inserted in
the distributed application. Often aChooseris embedded in the user-interface to
let the user decide, which class should be inserted. Eventually, theChooserfires
a NewClassevent. The event is simply passed by theChooserto a bean that is

DESIGN OF EXTENSIBLE COMPONENT-BASED GROUPWARE 63

new class event

(a)(a) (b)(b) (c)(c)
event listener

event source

loader loader loader

Figure 6. A loader receives a new class (a) and instantiates it (b); then the loader and the new
object can register mutually (c).

derived from aGroupSender, which publishes it to the configured group. The event
is then received by all beans that extend aGroupReceiverfor this event type and
are subscribed on that group. TheGroupReceiverpasses the event to aLoader,
which instantiates the class. The resulting object can then be used by theCreator
to replace or add a newReal Subject.

The combination of the Extensibility pattern with the group communication
beans can be used to extend well specified hot spots in distributed applications; the
specification is the interfaceSubject. If a hot spot defines a lot of methods, each
component has to implement these methods, before it could be used to extend the
hot spot. Sometimes, however, it is not feasible to be constrained by an interface. In
the case of truly independent components, such as applications, it would be needed
to write an adapter (Gamma et al., 1994) to insert them. On the other side, even such
components may use some of the available information by the loading component.
Instead of using the static information provided by the interface, a variation of our
pattern uses the reflection mechanisms of Java and Java Beans to connect to the
available hooks.

Figure 6 illustrates this concept. ANewClassevent arrives at theloader (a).
Upon arriving, theloader loads the class and instantiates it (b). Since the loader
does not know at this time the features of the arrived bean, it uses introspection
to discover the events, which can be fired by the new bean. For the events it is
interested in, the loading bean adds its interest by calling the discovered registration
methods (c). Now, the loading bean can receive events from the new bean. If the
loading bean provides itself events and has discovered by introspection that the new
bean implements the appropriate method to connect itself, it invokes that method.
Then the loaded bean uses the same mechanism to subscribe itself to the events it
is interested in.

TheNewClassevent may additionally carry the name of a start method. If the
new class is not a bean, no events are connected, but the start method will still be
called. Thus it is possible to pass arbitrary Java programs and start them remotely.
The newly loaded code can interact with the loading application by means of two
mechanisms: by mutual registration for the provided events that are discovered

64 JAKOB HUMMES AND BERNARD MERIALDO

Figure 7. Trade-off between application extensibility, component granularity, and understand-
ability for the end-user.

during initialization and by the presented group communication beans. The latter
are also used to communicate with other remote applications.

3.4. APPLICABILITY

Extensibility of CSCW applications can be introduced on various levels of granu-
larity, varying from the one extreme, where only new applications can be started,
to the other extreme, where every component may be extended. The place and
number of hot spots in the design determine the extensibility of the application
framework. But, the number of hot spots does not only worsen the performance of
the application, but it increases also the necessary effort of maintenance.

Figure 7 shows how the level of extensibility relates with the granularity of
components that can be inserted and the understandability and maintainability for
the end-user. The MBone tools (Eriksson, 1994) may serve as an example for very
small but successful extensibility: the user can click in the session directory (sdr)
on a session, which starts the needed tools to join the audio and video session.
The tools are stand-alone applications, which are started in a different process.
Medium extensibility is granted by domain specific frameworks with some hot
spots; TeamWave (Roseman and Greenberg, 1997) is a groupware application,
which uses a custom made component model on top of GroupKit (Roseman and
Greenberg, 1996) to offer extensibility and tailoring support. The highest level of
extensibility would be the usage of the Extensibility pattern for every component
in a system.

If extensibility is only provided by means of starting applications in new
processes, the original and the new application must use a protocol to exchange
data, which is normally different from local interaction. Therefore, inserting
components into a running application has the advantage that they can be integrated
seamlessly; the new components become part of the application. The components
can interact locally and use same the interaction protocol of the component model.

Our experiments with our pattern and component based CSCW applications
suggest that most extensions of groupware applications happen at anticipated
places. If the application uses design patterns, some hot spots can be found during

DESIGN OF EXTENSIBLE COMPONENT-BASED GROUPWARE 65

Figure 8. The loader application in a visual IDE.

the design phase (Schmid, 1997). However, it remains an art rather than pure
engineering to design extensible applications. We will give some examples in
the next section, how extensibility can be designed and implemented in CSCW
applications.

4. Examples

This section gives some examples, how the Extensibility pattern is used to design
extensible CSCW applications. The first example presents a minimal CSCW
component, which is used to distribute and start other cooperative components. We
use a chat component as example to demonstrate the application of the Extensibility
pattern. The insertion of a voting component during a chat session highlights the
use of the Extensibility pattern to support unforeseen cooperation modes. Finally,
we summarize our experience of using the Extensibility pattern in tele-teaching
components.

4.1. DESIGN OF A MINIMALLY EXTENSIBLE CSCW APPLICATION

An example for a minimally extensible CSCW application is a loader that offers
the functionality to distribute and insert coarse grained components, which are
actually CSCW applications themselves. When the user selects a new component
for insertion, the code is distributed to all participants of the group and started
within their instances of the loader.

Figure 8 shows the composition of the loader within a visual IDE.4 The user
interface consists of two beans to enter the participant and the group name and a
button to insert a new component. When the user presses the button, a file dialog
pops up, which lets the user select a component. After choosing the component an
event is passed to a non-visualController bean, which generates aNewClassevent
and passes it to aGroupSender, which is configured with the group name. All

66 JAKOB HUMMES AND BERNARD MERIALDO

Figure 9. The design of an extensible input component (right) for a chat tool (left). The
this variable gives access to the methods and variables of the defining bean (here: the input
component).

loaders of the group members will eventually receive theNewClassevent and start
the associated component by theCreator. TheCreator for the loader is configured
to add every received component and to use the reflection capabilities to register
for available events. The loaded component can query the properties of the loader
via reflection – in this case it finds the participant and group name.

In the presented form, the loader supports the insertion of symmetric CSCW
applications, i.e. applications that are executed at each participant. For example,
the loader can be used to insert the components of the next examples: a chat
and a voting component. We have also developed a loader component for asym-
metric groupware, which supports the local insertion of a server component, and
distributes clients for this component to all other participants.

4.2. DESIGN FOR FUNCTIONAL EXTENSIONS

A well-known example for a synchronous CSCW application is a chat. A chat
allows the exchange of textual messages between all members of a group. This
example will focus on the design of an extensible chat and present a component
that can be inserted at run-time to support a simple floor control policy.

Figure 9 shows a running chat application, and the component composition
at design-time for the input part of the chat. A new message is distributed by a
Chat event to all participants; the output part of the chat component eventually
receives the event and shows it to the user. The reaction on user input is performed
within the beanChatInputControlProxy, which has access to the input field and
some environment properties. Whenever the proxy generates a newChatevent, it
is distributed by aGroupSenderfor this event (ChatGS) to all participants. In this
example, the user-interface additionally offers a button to insert a new component
into the running application.

Figure 10 shows the internals of the proxy, which allows the replacement of
the default strategy. TheBeanCreatorcan receive new beans that implement the

DESIGN OF EXTENSIBLE COMPONENT-BASED GROUPWARE 67

Figure 10. The design of theChatInputControlProxy.

interfaceChatInputControlI; it takes as default the componentChatInputControl.
The input field and the current instance of the input control are associated with
a variable of the typeChatInputControlI. Depending on the actual input control
bean, aChatevent is fired to the proxy, which forwards it to theGroupSender.

This example implements a very simple mechanism to plug a new component
into the running system (see Figure 11). When the user clicks on the “Insert
component” button of the chat application, a dialog box pops up and the user selects
the hot spot to extend. Then the user chooses from a list of available components.
The actual design and implementation for the selection uses the same components
as the simple loader, which was previously described. As will be discussed later, a
more sophisticated mechanism should be used in real-world applications.

To add a floor control mechanism, the default implementation ofChatInputCon-
trol (Figure 12, left) can be replaced byChatInputFloorControl(Figure 12, right)
during run-time. The new component displays an additional simple user-interface
to request the token for input; the input field of the chat bean is only enabled, if
the user has the token. It also usesGroupSendersto request and release5 a token.
The newly inserted component interacts seamlessly with the existing components,
since it implements the same interfaceChatInputControlI.

The design of the chat components follows a simplified Model-View-Controller
pattern (Buschmann et al., 1996). To insert components, which provides new
behavior, we designed the controller of the chat input component to be exchange-
able; the design uses the presented Extensibility pattern. The other chat compo-
nents are designed in a similar way. Another hot spot is designed in the chat output
component; a possible extension would be to add a component to write a log file
of the discussion.

The chat example has shown the applicability of the Extensibility pattern to
change the component’s behavior at specially defined hot spots. It is thus classified
in the medium level of granularity.

68 JAKOB HUMMES AND BERNARD MERIALDO

Figure 11. User-interface for insertion of a new component and its implementation.

Figure 12. TheChatInputControlProxyis configured by default with the beanChatInputCon-
trol (left); it can be replaced byChatInputFloorControl(right) to support a token based floor
control policy.

4.3. DESIGN OF A SECOND APPLICATION FOR INSERTION

The loader can be used to start more than one cooperative tool for all group
members. For example, the chat tool is inserted for a discussion in a meeting with
remote participants. After a while, a decision must be made about the discussed
topics. The chair decides to create a list of the topics, and each participant has
to vote for one item on the list. So, the chair uses an IDE to customize a voting
component to be inserted and distributed using the loader. The voting component
is shown to each participant; after a participant has submitted his vote, a separate
frame shows all arriving votes from the others.

DESIGN OF EXTENSIBLE COMPONENT-BASED GROUPWARE 69

Figure 13. A voting component (left) and the associated customizer (right).

The design-time customization of a vote component is a very easy task: A
question component is dropped on the vote panel within a visual IDE (Figure 13).
The vote panel has an associated customizer to add new questions, to manipulate
them, and to provide different language features. The customizer offers the user a
graphical interface to hide all details of programming. The end-user only performs
drag-and-drop operations and fills in text fields. The customizer constructs a new
voting component with this information, which can then be inserted by the loader
to be distributed to all participants.

This example has shown the applicability of the Extensibility pattern for coarse
grained components to support the insertion of new cooperation forms. It also has
validated the approach to use off-the-shelf visual builder tools to let the end user
build a new component by design-time customizing existing beans, which are then
distributed and inserted into the running CSCW system.

4.4. OTHER EXAMPLES

We have redesigned some of our earlier developed remote education components
to offer extensibility. As an example, we placed the Extensibility pattern in remote
tutoring components (Hummes et al., 1998b) to allow the insertion of arbitrary
components supporting cooperation among the students and tutors. The tutoring
components allow students to contact a tutor, if they want assistance in a remote
laboratory course. The tutor gives peer-to-peer advice by using cooperation beans.
In the original implementation the components for cooperation could be changed
only at design-time; the new implementation can use several cooperation forms
by inserting them at run-time. The tutor can now also distribute questionnaires
(Hummes et al., 1998a) to all students at the end of a laboratory course to monitor
their learning progress. The tutor has prepared the questionnaire during the labora-
tory course based on the issues that have been discussed with the students. The
creation of such a questionnaire is highly supported by customizers within a visual

70 JAKOB HUMMES AND BERNARD MERIALDO

IDE. The presented customizer for the vote panel is actually a reused component
for multiple choice questions from this tele-exam framework.

5. Discussion

The examples have shown the applicability of the Extensibility pattern within
component based CSCW applications. By using the pattern one actually designs
domain specific application frameworks. These application frameworks can be
extended at run-time by inserting new components. The new components can be
created by the end-user outside the application within visual IDEs.

The examples have used the Extensibility pattern to insert coarse and medium
grained components. The placement of the hot spots with the pattern in the
examples is based on the anticipation of possible extensions. This leads to the
question whether a rule can be given where the hot spots should be located.

The main problem is that a conflict exists between the level of extensibility
and the level of understandability (cfg. Section 3.4). If each component was made
extensible, the design and implementation would become unnecessary complex.
Even, if the performance affected by the added complexity could be improved
(for example with the Flyweight pattern (Gamma et al., 1994)), the maintain-
ability criteria still limits the amount of hot spots. On the other hand, too few hot
spots limits the extensibility of the application. So, a compromise must be found
depending on the domain of the application.

We found that the design of cooperation offers a good starting-point to insert
hot spots in CSCW applications. Components that are triggered by user actions and
perform operations depending on these actions are candidates to be extended. If the
design of an application that uses design patterns, the location of potential hot spots
can be derived from the design (Schmid, 1997). In the case of CSCW applications,
patterns used for cooperation must be examined. In the often used Model-View-
Controller pattern, a potential hot spot for extension in each application is located
in the Controller, while the View would be a candidate for being extended only
locally. Cooperations that can use different strategies, can change their strategies
by placing the Extensibility pattern within the Strategy pattern (Gamma et al.,
1994). A good example for adding a new strategy component would be a new
algorithm for video encoding and decoding in conference systems. The Mediator
pattern (Gamma et al., 1994) can be used to design tailorable CSCW systems by
attaching cooperation enablers (Syri, 1997) to cooperative artifacts. By placing the
Extensibility pattern within the Mediator new enablers could be introduced in the
running system. While we have presented here a non exhaustive list of potential
locations, where hot spots could be useful, it is still up to the groupware designer
to decide, where hot spots will eventually be placed. Her or his analysis will be
oriented on the domain of the application.

New components can be inserted on the demand of other components or on the
demand of the end-user. In the latter case, the end-user must be supported by a

DESIGN OF EXTENSIBLE COMPONENT-BASED GROUPWARE 71

user-interface to select the appropriate hot-spot and component to obtain a certain
behavior by his extension. We have used a simple file chooser in our examples. A
more sophisticated approach would present the user the potential plug-points and a
list of available components that are available to extend each one. By introspecting
the selected component, such a list can be created automatically. Additionally, the
user should also get a description of the intent, effects and possible side-effects for
each component.

The presented implementation to insert components at run-time uses code distri-
bution. To inform remote applications to insert a new component, we used group
communication beans that can distribute arbitrary events. The needed information
about the new components is encapsulated in an event. So, the implementation is
coherent with the Java Beans event model. Thus it is supported by visual builder
tools for Java Beans.

The distribution of code has the advantage that components have access to the
local system properties. Thus user-interface components can also be distributed.
Another advantage lays in increased performance compared with remote object
communication if the inserted component is often used. The biggest advantage
in a cooperative environment is that the component which should be inserted in
the running application needs not be installed at the remote machines before the
application is started.

The operation of loading and instantiating classes via the network opens severe
security risks. Since Java is a network language, these risks are well-known and
methods for protection exist. Java code can be signed. A signature authenticates
the creator of the code. If code is manipulated after signing, this can be detected.
Although signed code allows one to only accept code by trustworthy sources, the
problem of who to trust remains. In a cooperative environment, this question is
hard to answer. Even if all persons that are allowed to distribute new code are
trustworthy, failures in the distributed code can cause damage (Zhang, 1997).
The problem can be partly solved by giving explicit rights for customizing code
(Stiemerling and Cremers, 1998). Another barrier can be inserted by granting new
classes only the rights they need to function. If, however, a class claims to need full
rights and is created by a person of full trust, the problem remains. This problem
can not be generally solved.

6. Conclusion

This article has focused on the insertion of new components into running
synchronous CSCW applications to tailor their behavior. We have proposed to
split the act of tailoring into the steps of the design-time customization of new
components within visual IDEs and their insertion into the running application.
This decoupling leads to a shorter development cycle of applications. Furthermore,
the end-user needs only to accustom to one IDE to tailor different applications.

72 JAKOB HUMMES AND BERNARD MERIALDO

When IDEs will be delivered as components, our approach can be taken to extend
CSCW applications with those pluggable builder tools.

We have presented a design pattern which is focused on modeling insertion
points at hot spots in a general way. Since CSCW applications are inherently
distributed, we have developed components that are used to distribute arbitrary
events across process boundaries to a configurable group of receivers. These
group communication components are used by our examples for all remote event
communication. Extensions are implemented as Java beans and distributed through
remote events. They are then automatically inserted at the provisioned hot spots.
Once inserted, the new components are seamlessly integrated within the running
application. Independent coarse grained components that function also without
information about their environment can be inserted without conforming to a
predefined interface. Nevertheless they can query their environment via reflection
to register for events or to read and write properties. Thus arbitrary applications
can be distributed and started remotely. The presented examples have shown the
use of the Extensibility pattern to create hot spots within component based CSCW
applications.

This article has discussed the tension between extensibility and understandab-
ility in the design. Increasing the extensibility increases also the complexity of
the design and thus decreases the understandability. This leads to the conclusion
that a design is not reasonable where all components are extensible or exchange-
able during run-time. So, we have revisited the design patterns, which were used
in the examples, to find the locations where hot spots have been inserted. The
located places have been compared with some design patterns in the literature.
Thus we have shown, where the Extensibility pattern is most useful in the design of
CSCW applications. However, it remains still a task for the application designers
to identify the hot spots from their expertise. Once potential insertion points are
recognized, the developer can uniformly design the hot spots using the introduced
Extensibility pattern.

One problem, which should be addressed by further work, is how the exten-
sibility can be presented to the end-user. The presentation should include the hot
spots of an application and their possible extensions. Such a presentation must find
means for an intuitive graphical user-interface to insert components at the right
places.

Acknowledgments

We want to thank David Turner for proof-reading earlier versions of this article.
Arnd Kohrs has provided valuable Java hints in various discussions and without
his help most of our components for remote tutoring would never have been imple-
mented. Last, but not least, we want to acknowledge the detailed comments by the
anonymous reviewers.

DESIGN OF EXTENSIBLE COMPONENT-BASED GROUPWARE 73

The described work is part of the ACOST research project, which is funded by
the research institute CNET Lannion of France Telecom.

Notes

1. We follow the convention to use an initial upper-case letter to name patterns, to usebold names
for classes and to useitalic names for beans and events.

2. Fowler (1997) provides a good overview on the UML notation.
3. In this pattern, theProxy extends theSubject interface to be conform with the Proxy pattern.

However, for the framework developer it is only important that the definition of theProxy
remains stable, while the developer of the pluggable components (theReal Subjects) relies on
a stable definition ofSubject. TheProxy class does not need to extend the same interface and
may act as Adapter or Bridge. Proxy, Adapter, and Bridge are described in Gamma et al. (1994).

4. This and all subsequent examples are built with IBM’s Visual Age for Java. A puzzle piece
denotes a non-visual bean, a puzzle piece in brackets a variable, an arrow a connection between
an event and a method, and a dotted line a connection between two properties.

5. This implementation implicitly releases the token after a user has sent a message. The server for
the floor control is not shown here.

References

Bentley, R. and P. Dourish (1995): Medium versus Mechanism: Supporting Collaboration Through
Customization. In H. Marmolin, Y. Sundblad and K. Schmidt (eds.):Proceedings of the Fourth
European Conference on Computer-Supported Cooperative Work. Stockholm, Sweden, pp. 133–
148.

Buschmann, R., R. Meunier, H. Rohnert, P. Sommerlad and M. Stal (1996):Pattern-Oriented
Software Architecture – A System of Patterns. John Wiley & Sons, Inc.

Dourish, P. (1995): Developing a Reflective Model of Collaborative Systems.ACM Transactions on
Computer-Human Interaction, vol. 2, no. 1, pp. 40–63.

Dourish, P. (1996):Open Implementation and Flexibility in CSCW Toolkits. PhD thesis, University
College, London.

D’Souza, D.F. and A.C. Wills (1998):Objects, Components and Frameworks with Uml: The
Catalysis Approach. Addision-Wesley: Object Technology Series.

Eriksson, H. (1994): MBONE: The Multicast Backbone.Communications of the ACM, vol. 37, no.
8, pp. 54–60.

Fayad, M.E. and D.C. Schmidt (1997): Object-Oriented Application Frameworks.Communications
of the ACM, vol. 40, no. 10, pp. 32–38.

Fowler, M. (1997):UML Distilled. Addison-Wesley: Object Technology Series.
Gamma, E., R. Helm, R. Johnson and J. Vlissides (1994):Design Patterns – Elements of Reusable

Object – Oriented Software. Addison-Wesley.
Hughes, J.A., W. Prinz, T. Rodden and K. Schmidt (eds.) (1997):Proceedings of the Fifth European

Conference on Computer-Supported Cooperative Work. Lancaster, UK: Kluwer Academic
Publishers.

Hummes, J., A. Kohrs and B. Merialdo (1988a): Questionnaires: A Framework Using Mobile Code
for Component-Based Tele-Exams. InProceedings of IEEE Seventh International Workshops on
Enabling Technologies: Infrastructure for Collaborating Enterprises (WET ICE). Stanford, CA,
USA.

74 JAKOB HUMMES AND BERNARD MERIALDO

Hummes, J., A. Kohrs and B. Merialdo (1998b): Software Components for Cooperation: A Solution
for the “Get Help” Problem. InCOOP ’98: Third International Conference on the Design of
Cooperative Systems. Cannes, France.

JavaSoft (1996): Java Beans 1.0 API Specification. http://java.sun.com/beans.
Johnson, R.E. (1997): Frameworks = (Components + Patterns).Communications of the ACM, vol.

40, no. 10, pp. 39–42.
Kiely, D. (1998): Are Components the Future of Software?IEEE Computer, pp. 10–11.
Krieger, D. and R.M. Adler (1998): The Emergence of Distributed Component Platforms.IEEE

Computer, pp. 43–53.
Malone, T.W., K.-Y. Lai and C. Fry (1995): Experiments with Oval: A Radically Tailorable Tool for

Cooperative Work.ACM Transactions on Information Systems, vol. 13, no. 2, pp. 175–205.
Mark, G., L. Fuchs and M. Sohlenkamp (1997): Supporting Groupware Conventions through

Contextual Awareness. In Hughes et al. (eds.): pp. 253–268.
Mowshowitz, A. (1997): Virtual Organization.Communications of the ACM, vol. 40, no. 9, pp. 30–

37.
Mørch, A. (1995): Application Units: Basic Building Blocks of Tailorable Applications. InProceed-

ings of the Fifth International East-West Conference on Human-Computer Interaction, Vol. 1015
of Lecture Notes in Computer Science, pp. 45–62.

Mørch, A. (1997): Three Levels of End-User Tailoring: Customization, Integration, and Extension.
In M. Kyng and L. Mathiassen (eds.):Computers and Design in Context, Chapt. 3. Cambridge,
MA: The MIT Press, pp. 51–76.

Pree, W. (1994): Meta-Patterns – A Means for Capturing the Essentials of Reusable Object-Oriented
Design. InProceedings of ECOOP ’94. Bologna, Italy.

Roseman, M. and S. Greenberg (1996): Building Real Time Groupware with GroupKit, a Group-
ware Toolkit.ACM Transactions on Computer Human Interaction, vol. 3, no. 1, pp. 66–106.
http://www.cpsc.ucalgary.ca/projects/grouplab/papers/papers.html.

Roseman, M. and S. Greenberg (1997): Simplifying Component Development in an Integrated
Groupware Environment. InProceedings of ACM UIST ’97 Symposium on User Interface
Software and Technology. Banff, Alberta, pp. 65–72.

Schmid, H.A. (1995): Creating the Architecture of a Manufactoring Framework by Design Patterns.
In Proceedings of OOPSLA ’95. New York.

Schmid, H.A. (1997): Systematic Framework Design by Generalization.Commiunications of the
ACM, vol. 40, no. 10, pp. 48–51.

Solomon, C. (1995):Developing Applications with Microsoft Office: Strategies for Designing,
Developing, and Delivering Custom Business Solutions Using Microsoft Office. Redmond, WA:
Microsoft Press.

Stiemerling, O. and A.B. Cremers (1998): Tailorable Component Architectures for CSCW-Systems.
In Proceedings of the Sixth Euromicro Workshop on Parallel and Distributed Programming.
Madrid, Spain, pp. 302–308. http://www.cs.unibonn.de/õs/.

Syri, A. (1997): Tailoring Cooperation Support through Mediators. In Hughes et al. (eds.): pp. 157–
172.

Trigg, R.H. and S. Bødker (1994): From Implementation to Design: Tailoring and the Emergence of
Systematization in CSCW. In R. Furuta and C. Neuwirth (eds.):Proceedings of the Conference
on Computer Supported Cooperative Work. Chapel Hill, NC, USA, pp. 45–54.

Turoff, M. (1997): Virtuality.Communications of the ACM, vol. 40, no. 9, pp. 38–43.
Weinreich, R. (1997): A Component Framework for Direct-Manipulation Editors. InProceedings of

TOOLS-25. Melbourne, Australia.
Zhang, X.N. (1997): Secure Code Distribution.IEEE Computer, pp. 76–79.

