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Abstract

Earlier work has developed the rudiments of a
scheduling theory for computations having intertask
dependencies—modeled via dags—for Internet-based com-
puting. The goal of the schedules produced is to render
tasks eligible for execution as fast as possible, with the aim
of: (a) utilizing clients’ computational resources well, by
always having work to allocate to an available client; (b)
lessening the likelihood of a computation’s stalling for lack
of eligible tasks. Simulation studies suggest that this goal
does accelerate computation over the Internet. The theory
crafts a schedule for a dag G by “parsing” G (if possible)
into connected building-block dags that one can “compose”
to form G and then analyzing the scheduling dependencies
among these building blocks. The current paper extends the
theory by developing the Sweep Algorithm, a tool that al-
lows one to: (1) schedule using building blocks that are not
necessarily connected, and (2) craft schedules that inter-
leave the execution of subdags that have no interdependen-
cies. The augmented scheduling algorithms allow one to
craft optimal schedules for previously unschedulable dags.
Examples presented include artificial dags that are “close”
to ones arising in real computations, as well as a compo-
nent of a dag that arises in a functional MRI application.

1 Introduction

Earlier work [19, 20] has developed IC-Scheduling, a
formal framework for studying the problem of scheduling
computations having intertask dependencies for the several
modalities of Internet-based computing (IC)—including
Grid computing ([6, 11, 12]), global computing ([7]), and
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volunteer computing ([15]). The goal is to craft sched-
ules that maximize the rate at which tasks are rendered
eligible for allocation to remote clients (hence for execu-
tion), with the dual aim of: (a) enhancing the effective uti-
lization of remote clients, by always having work to allo-
cate to an available client; (b) lessening the likelihood of
a computation’s stalling pending computation of already-
allocated tasks. Two simulation studies—[16], which fo-
cuses on a small number of dags that arise in real sci-
entific computations, and [13], which derives eligibility-
enhancing schedules for hundreds of artificially generated
dags—suggest that schedules produced via IC-Scheduling
often have marked computational benefits over those pro-
duced by a variety of common heuristics (such as FIFO).

Inspired by the case studies of [19, 20], the study in [18]
developed IC-Scheduling theory, an algorithmic framework
that can optimally schedule a broad class of dags for IC. The
development begins with any collection of building-block
dags that can be scheduled optimally; it introduces two al-
gorithmic notions that allow us to schedule computation-
dags built from these building blocks.

1. The priority relation B on dags. The assertion “G1 B

G2” says that entirely executing first G1 and then G2 is
at least as good (relative to our quality metric) as any
other schedule that executes both G1 and G2.

2. The operation of composition on pairs of dags. If one
constructs a computation-dag G by composing build-
ing blocks that are pairwise comparable under relation
B, then we can often compute an optimal schedule for
G from optimal schedules for the building blocks.

IC-Scheduling theory is a work in progress. It already
optimally schedules dags that arise within a large variety of
important computations; Fig. 1 depicts five dags whose op-
timal schedules are derived in [10, 18, 19, 20]. To illustrate
that the theory does not demand the degree of structural uni-
formity of the dags in Fig. 1, Fig. 2 depicts1 three artificial
dags that the theory also schedules optimally.

1Henceforth, graph-edges in figures represent arcs that point upward.
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Figure 1. Data-dependency dags for: (left to right) recursive matrix multiplication, a wavefront computation, the
FFT; the discrete Laplace transform, a divide-and-conquer computation.

Figure 2. Three composite dags that the framework
of [9, 18] can schedule optimally.

The past successes of IC-Scheduling theory are tempered
by the existence of significant computations that admit op-
timal schedules but that the current theory cannot schedule
optimally. Fig. 3 presents three such dags. The top two

. . . . . .

Figure 3. Three dags that require our extended
framework.

are motivated by their structural similarities to the dags in
Figs. 1 and 2. The bottom dag duplicates a subdag of a large
functional Magnetic Resonance Imaging computation-dag;
see [16] for details. (This subdag appears once in the fMRI
dag, but similar subdags appear multiple times, so this du-
plication retains the spirit of the complete dag.)

The current paper extends IC-Scheduling theory by de-
veloping tools (in Sections 3, 4) that significantly expand
the repertoire of dags that the theory can schedule opti-
mally. This extension results from algorithms that allow
one: (a) to schedule using bipartite building-block dags that
are not necessarily connected, (b) to craft schedules that in-
terleave the execution of independent subdags. In partic-

ular, the new framework optimally schedules the dags of
Fig. 3. The enabling algorithmic tool also efficiently de-
cides B-priority between dags. Importantly, the extended
theory can schedule optimally a larger repertoire of real sci-
entific computation-dags; cf. [10].

Related work. Most closely related to our study are
its companions in developing IC-Scheduling theory. The
topic is introduced in [19, 20], where optimal schedules
are produced for several significant dags. The initial algo-
rithmic framework of the theory appears in [18] and is ex-
tended significantly in [9], both by allowing one to exploit
dag-duality as a scheduling tool and by greatly expanding
the repertoire of available building blocks. A companion
source, [17], pursues an alternative scheduling regimen for
IC, in which a server allocates batches of tasks at once. A
framework for minimizing makespan when processors pro-
ceed asynchronously on dags with unit-time tasks is stud-
ied and illustrated in [3]. Novel approaches to scheduling
computations having no intertask dependencies appear in
many sources, including [1, 2, 4, 5]. Finally, the impe-
tus for our study derives from the many exciting systems-
and/or application-oriented studies of IC, in sources such as
[6, 7, 11, 12, 14, 15, 21].

2 A Basis for a Scheduling Theory

A (Computation-)dag G has a set NG of nodes, each
representing a task in a computation, and a set AG of arcs,
each representing an intertask dependency. For arc (u →
v) ∈ AG : • task v cannot be executed until task u is; • u

is a parent of v, and v is a child of u in G. The indegree
(resp., outdegree) of u ∈ NG is its number of parents (resp.,
children). A parentless node is a source; a childless node
is a sink. G is bipartite if NG can be partitioned into X

and Y , and each arc (u → v) has u ∈ X and v ∈ Y . G
is connected if it is so when one ignores arc orientations.
When NG1

∩NG2
= ∅, the sum G1 + G2 of dags G1 and G2

is the dag with node-set NG1
∪NG2

and arc-set AG1
∪AG2

.
A quality model. When one executes a dag G, each

v ∈ NG becomes ELIGIBLE (for execution) only after all of
its parents have been executed (so sources are always ELI-



GIBLE). We do not allow recomputation, so v loses its ELI-
GIBILITY once executed. In compensation, executing v may
render new nodes ELIGIBLE—when v is their last-executed
parent. A schedule Σ for G is a rule for selecting which EL-
IGIBLE node to execute at each step. Σ’s IC quality is the
number of ELIGIBLE nodes after each execution—the more,
the better. (Note: Time is measured in an event-driven man-
ner, as the number of executed nodes.) Our goal is to ex-
ecute nodes in an order that maximizes the production rate
of ELIGIBLE nodes at every step of the computation. If Σ
achieves this demanding goal, then it is IC optimal. IC
optimality has two benefits. Having access to more ELIGI-
BLE nodes: (1) may reduce the chance of a computation’s
stalling when remote clients are slow (so that new tasks can-
not be allocated pending the return of allocated ones); (2)
will allow more (roughly) simultaneous requests for tasks to
be satisfied, thereby increasing “parallelism.” The simula-
tions in [16, 13] bolster our hope that the preceding intuition
does enhance the computational speed under IC.

A Framework for Crafting IC-Optimal Schedules

Lemma 2.1 ([18]) If a schedule Σ for a dag G is altered to
execute all of G’s nonsinks before any of its sinks, then the
IC quality of the resulting schedule is no less than Σ’s.

For i = 1, 2, let the bipartite dag Gi have si sources,
and let it admit the IC-optimal schedule Σi; moreover, let
EΣi

(t) denote the number of ELIGIBLE nonsources on G i

at step t. If the following inequalities hold:2

(∀x ∈ [0, s1]) (∀y ∈ [0, s2]) :
EΣ1

(x) + EΣ2
(y) ≤

EΣ1
(min{s1, x + y}) + EΣ2

(max{0, x + y − s1}),
(1)

then G1 has priority over G2, denoted G1 B G2. Informally,
one cannot decrease IC quality by executing a source of G1

whenever possible.

Lemma 2.2 B-priority is transitive [18]. One can decide
in time O(s1s2) whether or not G1 B G2.

On scheduling complex dags. The operation of compo-
sition is defined inductively as follows.
• Start with a set B of base dags. (Each base dag in [9,

18] is a connected bipartite dag, called a CBBB, for
“Connected Bipartite Building Block.”)

• One composes disjoint dags G1,G2 ∈ B to obtain a
composite dag G, as follows.

– G begins as the sum, G1+G2, with nodes renamed
to ensure that NG ∩ (NG1

∪NG2
) = ∅.

– Select some sinks from G1, and equally many
sources from G2, in the sum G1 + G2.

2[a, b] denotes the set of integers {a, a + 1, . . . , b}.

– Pairwise identify (i.e., merge) the selected sinks
and sources in some way. The merged set of
nodes is NG ; the induced set of arcs is AG .3

• Add the dag G thus obtained to the set B.

We denote composition (which is associative) by ⇑ and say
that G is composite of type [G1 ⇑ G2].
G is a B-linear composition of G1, . . . ,Gn if: • G is com-

posite of type G1 ⇑ · · · ⇑ Gn; • each Gi B Gi+1.

Theorem 2.1 ([18]) Let G be a B-linear composition of
G1, . . . ,Gn, where each Gi admits an IC-optimal schedule
Σi. The schedule Σ for G that proceeds as follows is IC
optimal.

1. For i = 1, . . . , n, in turn, Σ executes the nodes of
G that correspond to nonsinks of Gi, in the order
mandated by Σi.

2. Σ finally executes all sinks of G in any order.

The algorithms in [18] that determine whether the pre-
ceding framework applies to a dag G operate as follows.

1. G is “pruned” to remove shortcuts, arcs that duplicate
existing paths. The resulting “skeleton” dag G ′ shares
all of its IC-optimal schedules (if any) with G [18].

2. G′ is “parsed” (when possible) into a collection of
CBBBs, G1, . . . ,Gn, such that G′ is composite of type
G1 ⇑ · · · ⇑ Gn.

3. G is replaced by its super-dag G ′′, whose nodes are
G1, . . . ,Gn, and whose arcs indicate the compositions
that created G ′. I.e., if G′ was formed by merging some
sinks of Gi with some sources of Gj , then there is an
arc from supernode Gi to supernode Gj in G′′.

4. It is determined whether or not there is an B-
linearization of G1, . . . ,Gn that is consistent with the
topological dependencies within G ′′; i.e., if Gi pre-
cedes Gj in a topological sort of G ′′, then Gi B Gj in
the B-linearization.

The early success of [18] in scheduling significant dags
(including those in Fig. 1) leads to the current challenge of
expanding the range of dags that we can schedule IC opti-
mally, especially dags that occur in real computations.

3 The IC-Sweep Algorithm

Algorithm IC-Sweep advances IC-Scheduling theory
along two axes. Focus on a sequence of p ≥ 2 disjoint
dags, G1, . . . ,Gp, that all admit IC-optimal schedules.

IC-optimal scheduling. The algorithm either crafts an
IC-optimal schedule for G1 + · · ·+Gp or demonstrates that
no such schedule exists. Notably, the schedules produced
may interleave the executions of nonsinks from the {G i}.

3An arc (u → v) is induced if {u, v} ⊆ NG .



This contrasts with Theorem 2.1, whose schedules execute
all nonsinks from each G i consecutively.
Deciding B-priorities. The algorithm determines whether
or not G1 B · · ·B Gp.
Timing. The algorithm operates on G1 + · · ·+ Gp in time4

O





∑

1≤i<j≤p

ninj



 = O
(

(n1 + · · ·+ np)
2
)

. (2)

3.1 Algorithm IC-Sweep

Lemma 3.1 If G = G1 + · · · + Gp admits an IC-optimal
schedule Σ, then, (∀i ∈ [1, p]), Σ must execute Gi’s non-
sinks within G in the same order as some IC-optimal sched-
ule for Gi.

Proof Hint. No order of executing nonsinks from G1 and
from G2 can beat their IC-optimal schedules’ orders.

Lemma 3.1 suggests the importance of interleaving
node-executions from the summands. Focus on an IC-
optimal schedule Σi for each Gi.

3.1.1 Algorithm 2-IC-Sweep is the 2-dag version of
Alg. IC-Sweep.

Algorithm 2-IC-Sweep
1. Use schedules Σ1 and Σ2 to construct an (n1 +

1)× (n2 + 1) table E such that:

(∀i ∈ [0, n1])(∀j ∈ [0, n2])
E(i, j) is the maximum number of nodes of G1 +
G2 that can be rendered ELIGIBLE by executing i

nonsinks of G1 and j nonsinks of G2.

By Lemma 3.1, we can construct E as follows:

(∀i ∈ [0, n1])(∀j ∈ [0, n2])
E(i, j) = EΣ1

(i) + EΣ2
(j).

/*An initial portion of E appears in Table 1. (Recall
that EΣ(0) ≡ 0.)*/

2. Perform a left-to-right pass along each diagonal
i + j of E in turn, and fill in the n1×n2 Verification
Table V:

(a) Initialize all V(i, j) to “NO”
(b) Set V(0, 0) to “YES”
(c) for each t ∈ [1, n1 + n2]:

i. for each V(i, j) with i + j = t:
if V(i − 1, j) = “YES” or V(i, j − 1) =
“YES”
and if E(i, j) = maxa+b=t{E(a, b)}
then set V(i, j) to “YES”
/*A rectilinear continuation is found*/

4(1) Each Gi has ni nonsinks. (2) All variables in asymptotic expres-
sions may grow without bound. (3) Each EΣ(t), the number of ELIGIBLE
nodes on G’s nonsource nodes at step t, is known in advance.

ii. if no entry V(i, j) with i+ j = t has been
set to “YES”
then HALT and report “There is no IC-
optimal schedule.”
/*A diagonal of “NO” entries precludes a
rectilinear path*/

(d) HALT and report “There is an IC-optimal
schedule.”

Theorem 3.1 Let G1 and G2 be disjoint dags that, respec-
tively, admit IC-optimal schedules Σ1 and Σ2 and have n1

and n2 nonsinks. Alg. 2-IC-Sweep determines, within time
O(n1n2): (a) whether or not G1 +G2 admits an IC-optimal
schedule, in the positive case providing such a schedule Σ;
(b) whether or not either G1 B G2, or G2 B G1, or both.

Proof Sketch. Alg. 2-IC-Sweep attempts to maximize the
number of ELIGIBLE nodes at every step (thereby produc-
ing Σ) by using Σi on Gi’s nonsinks (i = 1, 2) to construct
table E . It seeks a sequence of node-executions that spec-
ifies a rectilinear path within E—a sequence of downward
or rightward entries—that connects E(0, 0) and E(n1, n2)
while having each E(i, j) maximize {E(a, b) | a+b = i+j}.
Any such path of “YES”es in V specifies an IC-optimal
schedule for G1 + G2:
• a downward move mandates executing the next nonsink
of G1 that is mandated by Σ1;
• a rightward move mandates executing the next nonsink of
G2 that is mandated by Σ2.
The absence of a rectilinear path indicates that one cannot
maximize EΣ at every step.

Further: G1 B G2 (resp., G2 B G1) if, and only if, V
contains a path of “YES”es from V(0, 0) to V(n1, n2), that
is shaped like uppercase “L,” n1 downward moves followed
by n2 rightward moves (resp., shaped like the digit “7”).

The algorithm spends time O(1) at each entry of V .
Note. All IC-optimal schedules for a dag produce the

same numbers of ELIGIBLE nodes at each step; therefore,
Alg. 2-IC-Sweep produces the same tables, hence makes
the same decisions in the same time, no matter which IC-
optimal schedules it uses for G1 and G2.

3.1.2 Sweeping multiple dags. Naively extending
Alg. 2-IC-Sweep to p > 2 dags, G = G1 + · · · + Gp

by extending E and V to p-dimensional tables leads to a
time-complexity of Ω(n1 · · ·np). We increase efficiency by
grouping G in the form (· · · (G1 + G2) + · · ·+ Gp), thereby
using Alg. 2-IC-Sweep iteratively and achieving the (gen-
erally) lower time-complexity (2).

Algorithm IC-Sweep
1. Perform Alg. 2-IC-Sweep on the sum G1 + G2.



E 0 1 · · · n2

0 EΣ1
(0) + EΣ2

(0) EΣ1
(0) + EΣ2

(1) · · · EΣ1
(0) + EΣ2

(n2)
1 EΣ1

(1) + EΣ2
(0) EΣ1

(1) + EΣ2
(1) · · · EΣ1

(1) + EΣ2
(n2)

...
...

...
. . .

...
n1 EΣ1

(n1) + EΣ2
(0) EΣ1

(n1) + EΣ2
(1) · · · EΣ1

(n1) + EΣ2
(n2)

Table 1. An initial portion of the Table E constructed by Algorithm 2-IC-Sweep.

2. For each step k = 2, 3, . . .:
(a) if Step k−1 does not succeed—i.e., the (k−

1)th invocation of Alg. 2-IC-Sweep halts with
the answer “NO”—then HALT and give the
answer “NO”

(b) else if Step k − 1 succeeds—i.e., the (k −
1)th invocation of Alg. 2-IC-Sweep halts with
the answer “YES”—then perform Alg. 2-IC-
Sweep on the sum (G1 + · · ·+ Gk) + Gk+1.

Theorem 3.2 Let G1, . . . ,Gp be p ≥ 2 disjoint dags, each
Gi admitting the IC-optimal schedule Σi and having ni

nonsinks. Alg. IC-Sweep determines, within time (2): (a)
whether or not G def

= G1 + · · · + Gp admits an IC-optimal
schedule, in the positive case providing such a schedule Σ;
(b) whether or not G1 B · · ·B Gp.

Proof Sketch. Let G1,1 = G1, and, inductively, G1,k =
G1,k−1 + Gk. Alg. IC-Sweep processes, in turn, G1 + G2,
G1,2 + G3, . . . , G = G1,p−1 + Gp. Focus on the p-
dimensional analogue, Ep, of table E , wherein each

Ep(i1, . . . , ip) = EΣ1
(i1) + · · ·+ EΣp

(ip).

1. IC-optimality. Alg. IC-Sweep decides whether or
not G admits an IC-optimal schedule, by seeking a recti-
linear path in Ep whose jth element is maximum over all
Ep(i1, . . . , ip) with i1+· · ·+ip = j. Validation is by induc-
tion on p (Theorem 3.1 is the base case), after we associate
Ep with the 2-dimensional tables E that Alg. 2-IC-Sweep
creates for the sum G1,p−1 + Gp.

2. Priorities. G1 B · · · B Gp iff Vp (constructed in the
natural way from Ep) contains a path of “YES”es between
Vp(0, . . . , 0) and Vp(n1, . . . , nk+1) that, dimension-wise,
covers, in turn:

Vp(0, 0, . . . , 0, 0), . . . ,Vp(n1, 0, . . . , 0, 0), . . . ,
Vp(n1, n2, . . . , np−1, 0), . . . ,Vp(n1, n2, . . . , np−1, np).

For efficiency, Alg. IC-Sweep processes Vp via a sequence
of 2-dimensional tables V(2)

2 , . . . , V
(p)
2 .

3. Bound (2) holds because sweep-analyzing G1 and G2

takes time T1,2 ≤ αn1n2, for some α > 0.
Note. This analysis is independent of the order in which

the algorithm orders the {Gi}.

3.2 Sample Applications of Alg. IC-Sweep

3.2.1 IC optimality via interleaving. Alg. IC-Sweep
produces IC-optimal schedules that the theory of [9, 18]
cannot. Table 2(left) exposes5 the following facts about the
CBBBs of Fig. 4. (a) Neither B1 B B2, nor B2 B B1. (b)
B1+B2 admits an IC-optimal schedule. (c) Both IC-optimal
schedules for B1 + B2 involve interleaving.

(b)

11 2 2

(a)

Figure 4. Two CBBBs whose sum requires an inter-
leaved schedule: (a) B1; (b) B2.

3.2.2 Dags with no IC-optimal schedules. The dag G3

of Fig. 5(a) does not admit an IC-optimal schedule. To wit,

(R)

1 2

6

3 4 5

7

0
0

1 2 3

(b)

(L) (R)

(a)

(L)

Figure 5. Two dags that cannot be scheduled IC op-
timally: (a) G3; (b) G4.

such a schedule would execute G(L)
3 + G

(R)
3 IC optimally,

where G(L)
3 (resp., G(R)

3 ) is the subdag of G3 in the lefthand
(resp., righthand) dashed box of Fig. 5(a). Table 2(center)
shows that this is impossible. A more complicated, but sim-
ilar, argument shows that the dag G4 of Fig. 5(b) does not
admit an IC-optimal schedule; cf. Table 2(right).

5In all tables, boxed entries indicate maximum entries along diagonals.



B1,B2 → 0 1 2
↓

0 0 3 5

1 4 7 9

2 6 9 11

G
(L)
3 ,G

(R)
3 → 0 1 2

↓

0 0 0 2

1 1 1 3

G
(L)
4 ,G

(R)
4 → 0 1 2 3 4

↓

0 0 0 0 1 3

1 0 0 0 1 3

2 1 1 1 2 4

3 2 2 2 3 5

Table 2. The Tables E for: (left to right) the CBBBs of Fig. 4; the left and right boxed subdags of: the dag G3 of
Fig. 5(a); the dag G4 of Fig. 5(b).

4 Scheduling Dags Using Alg. IC-Sweep

By enabling interleaved schedules for sums of CBBBs,
Alg. IC-Sweep is a major step toward liberating IC-
Scheduling from depending on connected building blocks.

4.1 The Enabling Theorem

Theorem 4.1 Let us be given p + 1 dags G1, . . . ,Gp, and
G′ such that: • each Gi has ni nonsinks and admits the IC-
optimal schedule Σi; let n = n1 + · · · + np; • G ′ has n′

nonsinks and admits the IC-optimal schedule Σ′; • the sum
G

def
= G1 + · · ·+ Gp admits the IC-optimal schedule Σ.

If Gi B G′ for all i ∈ [1, p], then G B G ′.

Proof Hint. The proof is by iterated application of the sys-
tem (1) that defines B-priority.

Because B is transitive, our expanded scheduling algo-
rithm subsumes the algorithm of [18]:

Corollary 4.1 Say that each of the p + q dags
G1, . . . ,Gp,G

′
1, . . . ,G

′
q admits an IC-optimal sched-

ule. If G1 B · · · B Gp B G′1 B · · · B G′q , then
(G1 + · · ·+ Gp) B (G ′1 + · · ·+ G′q).

4.2 The Consequences of Theorem 4.1

Alg. IC-Sweep enables the following expansion of the
algorithmic suite of Section 2.

1. Invoke the first three algorithms of Section 2 to pro-
duce, in succession:

(a) the “pruned,” shortcut-free dag G ′,
(b) the constituent CBBBs B1, . . . ,Bn of G′, each

with an IC-optimal schedule (if possible),
(c) the super-dag G ′′ with node-set {B1, . . . ,Bn},

whose arcs indicate compositions thereof.
2. If G′′ cannot be generated—because some subalgo-

rithm or condition fails—then the new strategy does
not work with G.

3. We seek a B-linearization of G ′′ via CBBBs or sums
thereof. We start with:

• G′′, as the current remnant super-dagR,
• an empty list L, as our current progress toward a B-
linearization of G′′.

Let RB denote the R obtained by removing source-
CBBB B from the currentR.

(a) If some source-CBBB Bi ofR satisfies: for each
source-CBBB Bj of RBi

, Bi B Bj , then delete
Bi from R (i.e., R ← RBi

) and append it to list
L. Go to step (a).

(b) IfR is empty, then we are done: L is the desired
B-linearization of G ′′.

(c) Say that we reach a point where, for each source-
CBBB Bi of R, there is a source-CBBB Bj of
RBi

such that not Bi B Bj . Then we attempt to
extend L via Theorem 4.1—since we cannot just
append a new source-CBBB. To this end:

i. Assemble all source-CBBBs, B′
1, . . . ,B

′
k of

R.
ii. Say that (A) B′ = B′

1 + · · ·+ B′
k admits an

IC-optimal schedule; (B) for all i ∈ [1, k],
and for each source-CBBB Bj of RB′ B′i B

Bj .6 Then, invoking Theorem 4.1, we ap-
pend B′

1 + · · · + B′
k to L and return to step

(a).
iii. If the source-CBBBs do not satisfy condi-

tions (A) and (B), then stop, declaring that
no linearization could be found.

Our procedure is validated via the following invariant,
which follows from the transitivity of B.

If the described procedure succeeds, then every CBBB
or sum of CBBBs that is added to list L has B-priority over
every CBBB in the remnant super-dag.

L thus ends up as a B-linearization of G ′′, whose com-
ponents are either CBBBs or sums thereof.

6Note that Alg. IC-Sweep checks conditions (A) and (B) efficiently.



5 The Benefits of Algorithm IC-Sweep

Alg. IC-Sweep schedules IC-optimally dags that do not
yield to the framework of [9, 18]. In the full paper, we
show that it also significantly speeds up certain procedures
required by that framework.

Focus on a dag G with p + 1 levels: NG is the dis-
joint union N0 ∪ · · · ∪ Np; each arc of G goes from some
Ni to Ni+1. Say that the induced subgraph of G on each
Ni∪Ni+1 is a sum of CBBBs: Gi = Bi,1 + · · ·+Bi,pi

. Say
finally that: • each CBBB Bi,j admits an IC-optimal sched-
ule; • each sum Gi admits an IC-optimal schedule; • (∀i ∈
[0, p − 1])(∀j ∈ [1, pi])(∀k ∈ [1, pi+1]) [Bi,j B Bi+1,k ].
Corollary 4.1 implies the IC optimality of executing each
sum G1, . . . ,Gp in turn.

We instantiate our schematic scheduling problem with
the dags of Fig. 3, finding an IC-optimal schedule for each.
These are artificial dags, but they are similar to (sub)dags
arising in actual computations; cf. [10, 16]. Thus, they do
illustrate the power added by our extended framework.

1. We parse the top-lefthand dag G of Fig. 3 (via the
algorithm of [18]) into CBBBs B1, . . . , B7. Fig. 6 shows the

7

1 2

3 4 5 6

Figure 6. The super-dag formed from the dag G of
Fig. 3 using the new algorithm.

resulting super-dag, with each Bi in a dashed box labeled i.
Next, we test all inter-CBBB B-priorities. Table 2 shows
that neither B1 BB2 nor B2 BB1; but Table 3 shows that all
other CBBB pairings do admit a B-priority. Specifically:

[B1 B (B3 = B4)] and [B2 B (B3 = B4)]

and [(B3 = B4) B B6 B (B5 = B7)].

By transitivity, then, (B1 + B2) B B3 B B4 B B6 B

B5 B B7, which yields an IC-optimal schedule for G.
2. We parse the top-righthand dag G ′ of Fig. 3 into three

CBBBs: B0 and B1, B2 from Section 3.2.1. We then derive
from the super-dag of Fig. 7 an IC-optimal schedule for G ′:

3

1

2

Figure 7. The super-dag formed from the righthand
dag G′ of Fig. 3 using the new algorithm.

(1) execute the source; (2) execute the IC-optimal schedule
from Table 2.

3. Consider finally the bottom dag of Fig. 3; cf. Fig. 8.
Using the obvious right-to-left IC-optimal schedules of

FA B C D E

Figure 8. A small version of the fMRI dag of Fig. 3.

G(L) and G(R), we use see Table 3 to schedule their sum.
These IC-optimal schedules all interleave execution of

the summands’ sources.

6 Where We Are, and Where We’re Going

Conclusions. By incorporating Alg. IC-Sweep into the
framework of [9, 18], we can now schedule IC-optimally a
much broader range of dags. Much of this new power comes
from the ability to interleave the execution of subdags. A
major dividend is that the Algorithm efficiently decides B-
priorities for arbitrary sets of dags and, more importantly,
decides for dags G1 and G2 that admit IC-optimal sched-
ules, whether or not G1 + G2 admits such a schedule. Fi-
nally, the Algorithm sometimes accelerates procedures re-
quired by the framework of [9, 18].
Projections. We are expanding IC-Scheduling in several
directions, most importantly, by seeking a rigorous frame-
work for devising “approximately” IC-optimal schedules.
This quest is important because a computationally simple
heuristic schedule may be “almost as good” as a more ardu-
ously derived IC-optimal one.



B1 (B3 = B4) → 0 1 2
↓

0 0 0 1

1 4 4 5

2 6 6 7

B2 (B3 = B4) → 0 1 2
↓

0 0 0 1

1 3 3 4

2 5 5 6

B4 B6 → 0 1 2 3
↓

0 0 0 0 1

1 0 0 0 1

2 1 1 1 2

B6 B5 → 0 1 2 3 4
↓

0 0 0 0 0 1

1 0 0 0 0 1

2 0 0 0 0 1

3 1 1 1 1 2

G(L) G(R) → 0 1 2 3
↓

0 0 3 4 5

1 3 6 7 8

2 4 7 8 9

3 5 8 9 10

Table 3. The Tables E for pairings of the constituent CBBBs of the dag G of Fig. 3 (top three and left bottom); The
Table E for the summand dags of Fig. 8 (right bottom).
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